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Abstract

Participatory budgeting (PB) is an increasingly popular tool
for democratically allocating limited budgets to public-good
projects. In PB, constituents vote on their preferred projects
via ballots, and then an aggregation rule selects a set of
projects whose total cost fits within the budget. Recent work
studies how to design PB ballots and aggregation rules that
yield low distortion outcomes (informally, outcomes with
high social welfare). Existing distortion bounds, however,
rely on strong assumptions that restrict voters’ latent utilities.
We prove that low distortion PB outcomes can be achieved by
dropping these assumptions and instead leveraging the estab-
lished idea that voters can be public-spirited: they may con-
sider others’ interests alongside their own when voting.
Flanigan, Procaccia, and Wang (2023) prove that in public-
spirited single-winner voting (the special case of PB where
exactly one project can be funded) with ranking ballots, de-
terministic aggregation rules can achieve constant distortion.
Our first contribution is to extend this analysis to PB; there,
we prove that the best distortion permitted by deterministic
rules with ranking ballots grows linearly in the number of
projects. We find that this impossibility — a problem in prac-
tice, where m is often large — holds for other known ballots
as well. Our second contribution is the design of a new PB
ballot format that breaks this linear distortion barrier. This
ballot asks voters to rank a predetermined set of entire fea-
sible bundles of projects. We design multiple protocols for
implementing these ballots, each striking a different trade-
off between the number of bundles voters must rank and the
distortion: with m bundles, we get sublinear distortion; with
polynomial bundles, we get logarithmic distortion; and with
pseudopolynomial bundles, we get constant distortion.

1 Introduction
Governments at all scales regularly face the question: Which
public-good projects — e.g., building bike paths or installing
streetlamps — should they fund with their limited budget?
To make such decisions democratically, governments are
increasingly using participatory budgeting (PB), where a
group of constituents convenes to vote on which projects
their government should fund. In PB, the government sup-
plies a budget B and a list of m potential projects with cor-
responding costs. Voters submit their preferences via ballots,
which are then aggregated via an aggregation rule. The out-
put of this rule is a set of projects to be funded whose total

cost is at most B. PB is now used all over the world to allo-
cate public funds1 (Participedia 2023; De Vries, Nemec, and
Špaček 2022; Wampler, McNulty, and Touchton 2021).

When designing the PB process, one goal that many con-
sider important is ensuring that the ultimate allocation of
funds has high societal benefit. As have many others (e.g.,
Benadè et al. (2021)), we formalize the “societal benefit” of
an allocation by its utilitarian social welfare: the total utility
it gives to all voters. As such, we adopt the standard model of
latent additive utilities: each voter i has utility ui(a) ∈ R⩾0

for each project a, and her total utility for a set of projects
S being funded is ui(S) =

∑
a∈S ui(a). Then, the social

welfare of S is equal to sw(S) =
∑

i∈N ui(S).
If voters’ utilities were known, choosing the maximum-

welfare allocation would amount to solving the knapsack
problem. However, in practice voters’ preferences can only
be elicited more coarsely through ballots. One popular PB
ballot format is rankings by value, where voters rank all in-
dividual projects. It is not hard to see that this ballot format
loses far too much information about voters’ utilities: sup-
pose there are two projects a and b, and they both cost B so
we can fund only one. If the utilities for (a, b) are (1, 0) for
half the population and (0, X) for the other half (so, the wel-
fare of b is X times that of a), the resulting ballots will be
symmetric. Any deterministic aggregation rule will choose a
without loss of generality, suffering unbounded welfare loss
as X grows large; the best a randomized aggregation rule
can do is to choose a project uniformly at random.

This example illustrates a prohibitive impossibility: in the
worst case, any deterministic rule over ranking ballots will
select an outcome with arbitrarily sub-optimal social welfare
(and while randomized rules can do better, they do so triv-
ially by ignoring voters’ preferences). In fact, this impos-
sibility holds for all widely-studied ballots in the PB liter-
ature due to the same example (see Appendix E). Formally,
this sub-optimality is captured with the distortion: the worst-
case (over latent utilities) ratio between the best possible so-
cial welfare and that of the outcome. Existing work sidesteps
this impossibility by assuming that each voter’s utilities sum
to 1 (Benadè et al. 2021). Although this permits bounded
distortion in theory, it is unclear whether these bounds ap-

1See https://en.wikipedia.org/wiki/List of participatory
budgeting votes for a list of use cases.



ply in practice: for example, this assumption may not hold
in the likely case that all public-good projects on the ballot
will more greatly benefit lower-income constituents.

Fortunately, recent work by Flanigan, Procaccia, and
Wang (2023) offers a source of hope: under unrestricted util-
ities, they achieve low distortion in single-winner elections
by leveraging the idea that voters may be public-spirited:
when casting their ballots, voters consider others’ interests
in addition to their own. While it is not clear that such
public-spirited voting behavior would be reliably present in
the wild, as Flanigan et al. argue in-depth, research suggests
that public spirit can be cultivated via democratic delibera-
tion (Kinder and Kiewiet 1981; Wang, Fishkin, and Luskin
2020; Gastil, Bacci, and Dollinger 2010) — a practice that
is already commonplace in PB elections (Participedia 2023;
De Vries, Nemec, and Špaček 2022). The possibility of cul-
tivating public spirit among PB participants motivates our
main research question:

Question: If voters are public-spirited, can we design
PB elections that achieve low (perhaps even constant)
distortion with unrestricted voter utilities?

An affirmative answer to this question would support de-
liberation as a practicable approach to achieving higher-
welfare PB outcomes. While this question builds on Flani-
gan, Procaccia, and Wang (2023), answering it will require
fundamentally new methods because Flanigan et al’s results
apply only to single-winner voting, a substantially restricted
version of the PB setting in which all projects cost B.

1.1 Our Contributions
In the public-spirited voting model of Flanigan, Procaccia,
and Wang (2023), each voter i has some public spirit level
γi ∈ [0, 1]. She then evaluates each alternative (project)
a ∈ [m] according to her public-spirited (PS) value vi(a) :=
(1−γi)ui(a)+γisw(a), the convex combination of her own
utility and the social welfare. Note that this generalizes the
standard model in which γi is assumed to be 0 (that is, i eval-
uates a based on just her own utility). We extend Flanigan et
al.’s model to PB by assuming additive valuations, so i’s PS-
value for a set of projects S is simply vi(S) =

∑
a∈S vi(a).

Like Flanigan, Procaccia, and Wang (2023), our distortion
bounds are parameterized by γmin = mini γi, the minimum
public spirit level of any voter. For simplicity, we summarize
our main results below assuming γmin is a constant.

We first consider the canonical rankings ballot format also
studied by Flanigan, Procaccia, and Wang (2023), where
voters rank all individual projects by their value. For our first
main contribution, we show that the best distortion achiev-
able by any deterministic PB rule using ranking ballots is
Θ(m); for randomized rules, it is Θ(logm) (Section 3). Our
upper bounds are proven via general reductions from PB to
single-winner elections, which may be of independent inter-
est; proving and applying these reductions also leads to new
results for the single-winner setting. Our lower bounds im-
ply a fundamental separation between the single-winner vot-
ing and PB under public spirit: in single-winner voting with
ranking ballots, there are deterministic rules that achieve
constant distortion (Flanigan, Procaccia, and Wang 2023).

Our linear lower bound of Ω(m) for deterministic rules is
especially bad news: deterministic rules are typically used in
practice, and in many PB elections, m can be in the hundreds
or thousands (see Footnote 1). Focusing henceforth on de-
terministic rules, we pursue sublinear distortion by broaden-
ing our consideration to other ballot formats. Unfortunately,
in Section 4 we find that none of the main PB ballot for-
mats studied in past work (rankings by value-for-money, k-
approval, knapsack, and threshold approval — see Benadè
et al. (2021) for an overview) permit sublinear distortion (in
m). Establishing this linear distortion barrier faced by exist-
ing PB ballot formats under public spirit constitutes our next
main contribution.

Motivated by this impossibility, in Section 5 we introduce
rankings of predefined bundles, a novel PB ballot format that
asks voters to rank entire bundles of projects rather than in-
dividual projects. We show that with carefully-chosen bun-
dles, this ballots format does permit sublinear distortion in
PB. Further, with sufficient (but still fairly limited) informa-
tion about voters’ preferences elicited ahead of time, they
can even drop the distortion to constant. We study three pro-
tocols for using this ballot format, each eliciting more infor-
mation than the last in exchange for lower distortion:
1. Protocol 1 permits O(

√
m) and asks voters to rank at

most m feasible bundles.
2. Protocol 2 permits O(logm) distortion and is a two-

round protocol: in round 1 voters rank individual
projects, then in round 2 they rank at most logm bun-
dles crafted based on their votes in round 1.

3. Protocol 3 permits O(1) distortion. It is similar to Proto-
col 2 except that in round 2, voters rank O(m1+log logm)
feasible bundles in the worst case.

While Protocol 3 may be impractical in the worst case,
we provide empirical evidence that in realistic PB elections,
even Protocol 3 would require voters to rank less than m
bundles (Section 6). From a theoretical standpoint, Proto-
col 3 demonstrates the possibility of constant distortion with
only pseudo-polynomial bits of information, raising the tan-
talizing open question of whether constant distortion can be
achieved with only polynomially many bits.

1.2 Related work
Our work builds most directly on Flanigan, Procaccia, and
Wang (2023), who introduced the public-spirited model. We
generalize their work from single-winner elections to the
more general PB setting; and while they consider only de-
terministic aggregation rules, we additionally consider ran-
domized rules. In the process, we prove new insights for
the single-winner case. Our work also directly builds on the
works of Benadè et al. (2021), who analyzed distortion in
PB under the unit-sum utilities assumption. We contrast our
bounds to those achievable in their model in Appendix C.

Procaccia and Rosenschein (2006) introduce the distor-
tion framework in single-winner elections under the unit-
sum assumption. We now know that the best distortion
achievable by deterministic and randomized rules for this
special case are Θ(m2) (Caragiannis and Procaccia 2011;
Caragiannis et al. 2017) and Θ(

√
m) (Boutilier et al. 2015;



Ebadian et al. 2022), respectively. Optimal distortion bounds
have also been identified for k-committee selection (Cara-
giannis et al. 2017; Borodin et al. 2022), which is still a
special case of PB. Some have studied unit-range utilities
or metric costs in place of unit-sum utilities (Filos-Ratsikas
and Miltersen 2014; Anshelevich et al. 2018), but all these
models directly restrict voters’ cardinal preferences. For fur-
ther details, see the survey of Anshelevich et al. (2021).

Multiple approaches other than distortion have been stud-
ied for PB. The axiomatic approach has been used to iden-
tify aggregation rules satisfying desirable axioms such as
various monotonicity properties Talmon and Faliszewski
(2019); Baumeister, Boes, and Seeger (2020); Rey, Endriss,
and de Haan (2020). Another important consideration in PB
is whether the allocation of funds is fair with respect to
(groups of) voters (Fain, Munagala, and Shah 2018; Peters,
Pierczyński, and Skowron 2021; Brill et al. 2023). For fur-
ther details, we suggest the survey of Rey and Maly (2023)
and the book chapter of Aziz and Shah (2021).

2 Model and Preliminaries
We let [k] = {1, . . . , k} for any k ∈ N, and for a finite
set S, let ∆(S) denote the set of probability distributions
over S. We introduce the general framework of participatory
budgeting (PB) first, and later introduce single-winner and
multiwinner voting as its special cases.

Alternatives A, budget B, and costs c. In a PB instance,
there is a set of n voters N = [n] and a set of m alternatives
(projects) A. We denote voters by i, j and alternatives by
a, b. There is a total budget of B, which is normalized to 1
without loss of generality, and a cost function c : A → [0, 1],
where c(a) is the cost of a. Slightly abusing notation, denote
by c(S) =

∑
a∈S ca the total cost of alternatives in S.

Utilities U . Each voter i ∈ N has a utility for each alter-
native a ∈ A denoted by ui(a) ∈ R⩾0. Together, these util-
ities form a utility matrix U ∈ Rn×m

⩾0 . The social welfare of
a ∈ A w.r.t. utility matrix U is sw(a, U) =

∑
i∈N ui(a); for

any set of alternatives S ⊆ A, sw(S,U) =
∑

a∈S sw(a, U).
We use sw(a) or sw(S) when U is clear from context.

PS-levels γ⃗ and PS-values V . Following Flanigan, Pro-
caccia, and Wang (2023), we assume that each voter i ∈ N
has a public spirit (PS) level γi ∈ [0, 1], and, together, these
PS-levels form the PS-vector γ⃗ ∈ [0, 1]n. For a given γ⃗, we
let γmin := mini∈N γi be the minimum level of public spirit
among voters. Each voter i evaluates each alternative a by
her PS-value vi(a), a convex combination of her personal
utility ui(a) and sw(a)/n, the average voter’s utility for a:

vi(a) = (1− γi) · ui(a) + γi · sw(a)/n.

Note that this model does not restrict voters’ utilities; rather,
it assumes something about how they translate their utili-
ties into votes. These PS-values form the PS-value matrix
Vγ⃗,U ∈ Rn×m

⩾0 . For each S ⊆ A, let vi(S) :=
∑

a∈S vi(a).

Instances and special cases. An instance of the PB prob-
lem is composed of the elements defined so far: I =
(A,B, c, U, γ⃗). Let I be the set of all PB instances. Let

F(I) = {S ⊆ A : c(S) ⩽ 1} be the set of budget-feasible
subsets of A in instance I . F will be a generic such set.

We will sometimes build our results using ideas from
k-committee selection and single-winner voting — two re-
strictions of the PB setting. Formally, all instances of k-
committee selection are captured when I is restricted to ex-
clusively instances I with c(·) = 1/k (i.e., all alternatives
have cost 1/k), so F(I) consists of all subsets of alterna-
tives of size k. Single-winner voting is the further restriction
in which c(·) = 1. We will let Isingle-win := {I|c(·) = 1}
denote the set all single-winner voting instances.

Ballot formats. Since it is cognitively burdensome for
voters to report cardinal preferences, preferences are of-
ten elicited using discrete ballots. We denote a generic bal-
lot format as X, and let ρi(I,X) be the ballot submitted
by voter i in instance I . Correspondingly, let ρ⃗(I,X) =
(ρ1(I,X), . . . , ρn(I,X)) be the vote profile. When I,X are
clear, we will drop these from the notation. In Section 5, we
will design multi-round elicitation protocols; when there are
multiple rounds, a “vote profile” will refer to the profile of
votes collected in the final round of elicitation.

We primarily consider ordinal ballot formats, of which we
study two types. First, we consider canonical ranking ballots
(X = rank), which ask voters to rank alternatives. Then,
ρi(I, rank) is the permutation of A implied by the ordering
of i’s PS-values, so vi(a) > vi(b) ⇒ a ≻ρi(I,rank) b for
all a, b ∈ A (ties are broken arbitrarily, and a ≻ρ b denotes
that a is ranked ahead of b in ballot ρ). We then introduce
a novel ordinal ballot format, ranking of predefined bundles
(X = rank-b), which asks voters to rank entire bundles of
alternatives. Formally, the rank-b ballot format accepts an
argument of a collection of predefined bundles P ⊆ F(I);
then, ρi(I, rank-b(P)) is a permutation of the elements of
P such that vi(S) > vi(S

′) ⇒ S ≻ρi(I,rank-b(P)) S
′ for all

S, S′ ∈ P . To paint a more complete picture, we also briefly
consider other non-ordinal ballot formats in Section 4, but
we defer their definitions and proofs to Appendix C.

Aggregation rules. A (randomized) aggregation rule f
takes as input the vote profile ρ⃗ (from the final round of elici-
tation, if there are multiple rounds) and returns a distribution
over feasible bundles (an element of ∆(F)). We say that f
is deterministic if its output always has singleton support.
We will sometimes talk about single-winner rules versus PB
rules. Formally, a single-winner rule must output an element
of ∆([m]) while a PB rule can output any element of ∆(F).

We will frequently use the rule Copeland, so we define it
here. Copeland is traditionally defined for the single-winner
case with rank ballots. We make the natural extension here
to define Copeland also for rank-b(P) ballot formats. All
other rules we consider are defined as-needed.

Definition 1 (Copeland). Each alternative has a score, equal
to the number of alternatives it defeats in pairwise elections.
The Copeland winner is the one with the highest score.

When we want to choose multiple winners W , we often
use the rule Iterative Copeland: Copeland is used, the win-
ner is added to W and removed from the election, and then
Copeland is run again on the remaining instance, and so on.



Distortion. The distortion measures the efficiency of a
combination of a ballot format and an aggregation rule (if
there are multiple rounds, the rule applies to the final round).
Formally, it is the worst-case over all instances of the ratio
between the best achievable social welfare and the output of
the aggregation rule. Our bounds will depend explicitly on
m and γmin, so we denote the subset of I with m, γmin as

Im,γmin := {I ∈ I : |A| = m ∧ mini∈N γi = γmin}.
Then, the distortion is defined as

distX(f) = sup
n⩾1

sup
I∈Im,γmin

maxS∈F(I) sw(S,U)

ES′∼f(ρ⃗(I,X))sw(S′, U)
,

We sometimes study a rule’s distortion in the single-
winner case, where the set of instances is restricted to
Isingle-win. The single-winner distortion distsingle-win

X (f) is
therefore defined identically to distX(f) except the second
supremum is taken over Isingle-win

m,γmin (analogous to Im,γmin
).

Our distortion bounds will assume m ⩾ 2 and γmin ∈
(0, 1]. We are interested in the lowest distortion possible by
any aggregation rule using a given ballot format; this is a
measure of the usefulness of the information contained in
the ballot format for social welfare maximization.

Preliminaries. For comparison, in Appendix E we prove
that with no public spirit and unrestricted utilities, for all
ballot formats we consider, all deterministic rules have un-
bounded distortion and the randomized rules have at least
m distortion. In Appendix C we also contrast many of our
bounds to those achievable under unit-sum utilities.

Our upper bounds will often use the following lemma,
which is a simple generalization of Lemma 3.1 of Flanigan,
Procaccia, and Wang (2023); the proof is in Appendix A.1.

Lemma 1. Let A1, A2 ⊆ A be any two subsets of alter-
natives. Fix any α ⩾ 0 and define NA1≻A2

= {i ∈ N :
α · vi(A1) ⩾ vi(A2)}. Then:

sw(A2)

sw(A1)
⩽ α ·

(
1− γmin

γmin

n

|NA1≻A2
|
+ 1

)
.

In Appendix A, we also prove a robust version of
Lemma 1 showing that its guarantee degrades smoothly as
increasing voters have γi = 0. In Appendix G, we further
show that we can replace Lemma 1 with its robust version in
all our upper bound proofs, meaning that our upper bounds
degrade smoothly as well.

3 PB with Rankings over Projects
We begin by studying ranking ballot format rank, the canon-
ical ballot format in single-winner election and the one stud-
ied by Flanigan, Procaccia, and Wang (2023) (for only de-
terministic aggregation rules). Here we extend their results
to PB for deterministic and randomized rules.

3.1 Deterministic Rules
We begin by upper-bounding the distortion of Copeland in
PB, due to its strong performance in the single-winner case.

Theorem 1. distrank(Copeland) ∈ O
(
m/γ2

min

)
.

Proof. First, we prove a general reduction that converts any
deterministic single-winner rule to a deterministic PB rule.

Lemma 2 (PB → Single-Winner). For any d ⩾ 1, any
deterministic rule f with distortion d in single-winner voting
has distortion distrank(f) ⩽ m·d in participatory budgeting.

Proof. The proof of this lemma is straightforward: fix any
instance and let f return the singleton set {a}. Let A∗ be an
optimal budget-feasible set. Then,

sw(A∗)

sw(a)
=
∑

a∗∈A∗

sw(a∗)

sw(a)
⩽ m· max

a∗∈A∗

sw(a∗)

sw(a)
⩽ m·d.

Intuitively, a factor of m should be incurred from single-
winner to PB: unlike in the single-winner case, in PB even
when γmin = 1 (so all voters vote unanimously for the
highest-welfare alternative), it can remain unclear how to
make cost trade-offs without cardinal information, and de-
terministic rules still incur Ω(m) distortion. To conclude the
proof, we apply this reduction via the following bound on
Copeland’s distortion in the single-winner case, proven in
Thm. 3.3 of Flanigan, Procaccia, and Wang (2023):

distsingle-win
rank (Copeland) ∈ O(1/γ2

min). (1)

Now, we prove a lower bound on the distortion achievable
by any deterministic aggregation rule in the PB setting.
Theorem 2. Every deterministic rule f has distortion

distrank(f) ∈ Ω (m/γmin) .

Proof sketch. The full proof is in Appendix B.1. The lower
bound instance has only two (maximal) feasible sets, one
containing a single alternative a and the other containing the
remaining alternatives. A few voters rank a above the other
alternatives, while all other voters do the opposite. Through
detailed calculations, we show that there exist utilities for
which either choice can be sub-optimal by Ω(m/γmin).

Together, Theorems 1 and 2 imply that Copeland achieves
optimal dependency on m and is within a 1/γmin factor of
optimal overall. There are two possible sources of this re-
maining gap: our use of (or analysis of) a single-winner rule
via the reduction in Lemma 2, and our choice to apply the
reduction specifically Copeland. To shed light on the role of
each of these, we now prove a universal lower bound show-
ing that at least for large m, Copeland is the optimal single-
winner rule. This is a novel finding of independent interest
for the single-winner case, given that Flanigan, Procaccia,
and Wang (2023) do not give any universal lower bounds.
Theorem 3. For all deterministic single-winner rules f ,

distsingle-win
rank (f) ∈ Ω(min{m/γmin, 1/γ

2
min}).

The proof, found in Appendix B.2, uses a cyclic profile,
where an equal number of voters submit each of m cycli-
cally shifted permutations. The contribution is in the intri-
cate derivation of the piecewise bound.

Comparing Equation (1) and Theorem 3, when m ∈
Ω(1/γmin), Copeland’s distortion matches this lower bound.
When m ∈ o(1/γmin), Plurality, which selects the most



common first-choice alternative, provides a matching distor-
tion upper bound of O(m/γmin) (Flanigan, Procaccia, and
Wang 2023, Proposition 3.5). Hence, this lower bound “re-
solves” the deterministic single-winner case in that for every
regime of m and γmin, there is some voting rule that asymp-
totically matches it. Whether a single, γmin-oblivious rule
can do so remains open for future work.

3.2 Randomized Rules
We take a parallel approach to analyze what distortion is
achievable with rank ballots and randomized rules. Because
Flanigan, Procaccia, and Wang (2023) did not study random-
ized single-winner rules, we must first identify and analyze
a low-distortion single-winner rule anew—a result that is
of independent interest for the single-winner case. The rule
we select is Maximal Lottery, a single-winner rule originally
proposed by Kreweras (1965).2

Definition 2 (Maximal Lottery). The (directed) domination
graph G consists of a vertex corresponding to each alterna-
tive a ∈ A, and an edge from a to b whenever a defeats b in a
pairwise election (ties can be broken arbitrarily). The maxi-
mal lottery rule returns a distribution p over the vertices such
that for any vertex b ∈ A, the probability of picking b or a
vertex a with an edge to b is at least 1/2. The existence of
such a distribution can be inferred from, e.g., Farkas’ lemma
(see Thm. 2.4 of Harutyunyan et al. (2017)).

We now upper-bound Maximal Lottery’s distortion in PB:
Theorem 4. distrank(Maximal Lottery) ∈ O(log(m)/γmin).

Proof. We again begin by proving a general-purpose reduc-
tion to convert single-winner rules to PB rules. The reduc-
tion in the randomized case is more involved, and we do
it in two steps: we first reduce PB to committee selection
(Lemma 3), and then reduce that to single-winner voting
(Lemma 4). The first reduction incurs an O(logm) over-
head; the latter incurs none (asymptotically).

Lemma 3 (PB → Committee). Fix any d ⩾ 1. If there ex-
ists a randomized k-committee selection rule fm′,k with dis-
tortion at most d for each m′ ⩽ m and k ∈ [m′], then there
exists a randomized participatory budgeting rule f with dis-
tortion at most distrank(f) ⩽ 2d · (⌈log2(m)⌉+ 1).

Lemma 4 (Committee → Single-Winner). Fix any k ∈
[m] and d ⩾ 1. If there exists a single-winner rule fm′ with
distortion at most d for each m′ ⩽ m, then there exists a k-
committee selection rule f with distortion at most d. If fm′

is deterministic then so is f .

The proofs of Lemmas 3 and 4 are found in Appen-
dices B.3 and B.4, respectively. The log(m) overhead in
Lemma 3 comes from partitioning the alternatives into
O(logm) buckets and then applying a k-committee selec-
tion rule to a random bucket (similar approaches appear in
other work, e.g. Benadè et al. (2021)). The proof of Lemma 4

2This rule has been rediscovered numerous times (Laffond,
Laslier, and Le Breton 1993; Fishburn 1984; Fisher and Ryan 1995;
Rivest and Shen 2010). To the best of our knowledge, this is the first
analysis of this rule’s utilitarian distortion.

generalizes ideas from an analogous reduction for determin-
istic rules by Goel, Hulett, and Krishnaswamy (2018).

Next, to bound the distortion of Maximal Lottery via Lem-
mas 3 and 4, we must first upper-bound its distortion in the
public-spirited single-winner setting.

Theorem 5. distsingle-win
rank (Maximal Lottery) ∈ O (1/γmin) .

The proof of Theorem 5 is in Appendix B.5. The approach
is to apply Lemma 1 using the insight that Maximal Lot-
tery picks either the optimal alternative or an alternative that
pairwise-defeats it with probability at least 1/2.

Finally, applying Theorem 5 along with our reductions,
we conclude that in the PB setting, Maximal Lottery has dis-
tortion at most O(log(m)/γmin), as needed.

Now, we lower bound the distortion achievable by any
randomized aggregation rule in the PB setting.

Theorem 6. For all randomized rules f ,

distrank(f) ∈ Ω(log(m)).

Proof sketch. The full proof is in Appendix B.6, and it uses
the following novel construction: the alternatives are parti-
tioned into roughly

√
m buckets, and the ℓ-th bucket con-

sists of ℓ alternatives with cost 1/ℓ each. We use budget-
feasibility to bound the average marginal probability with
which an alternative from each bucket can be chosen, and
construct a set of latent utility matrices such that any out-
come is suboptimal with respect to at least one of them.

Together, Theorems 4 and 6 imply that Maximal Lottery
achieves optimal dependency on m and is within a 1/γmin

factor of optimal overall. As before, we explore the source
of this 1/γmin gap by showing that at least for large m, Max-
imal Lottery is the optimal randomized single-winner rule:

Theorem 7. For all randomized single-winner rules f ,

distsingle-win
rank (f) ∈ Ω (min {m, 1/γmin}) .

This lower bound is proven in Appendix B.7 by the same
construction as in Theorem 3, the analogous lower bound for
the deterministic case. As with Copeland in the determinis-
tic case, this bound shows that Maximal Lottery is optimal
when m ⩾ Ω(1/γmin). When m ∈ o(1/γmin), this bound
is matched by the rule that chooses a uniformly random al-
ternative. TAs before, whether a single γmin-oblivious ran-
domized rule can match this lower bound remains open.

4 PB with Other Known Ballot Formats
In Section 3, we found something that may initially seem
strange: in both the randomized and deterministic cases, vot-
ing rules designed for the single-winner setting — which
output just a single alternative, even in PB — achieved op-
timal dependence on m. This is due to the weakness of the
rank ballot format: designed for single-winner voting, rank
fails to capture fundamental aspects of the PB setting.

Others have tried to address this problem in the unit-sum
utilities model by designing better ballot formats. We now



pursue the same approach in the public spirit model: focus-
ing henceforth on deterministic rules for their practicality,
we aim to identify a ballot format that achieves sublinear dis-
tortion in m, thereby surpassing our lower bound of Ω(m)
in Theorem 2. To this end, we examine four other known
PB ballot formats (see Benadè et al. (2021)): rankings by
value for money, where each voter i ranks alternatives by
vi(a)/c(a); k-approvals, where each voter i submits a set
of k alternatives with the highest vi(a); knapsack, where
each voter i submits the budget-feasible set with the high-
est value vi(S); and threshold approvals, where the ballot
format specifies a threshold t and each voter i submits the
set of alternatives with vi(a) ⩾ t. Unfortunately, the answer
is resoundingly negative for all these ballot formats:
Theorem 8. All deterministic rules have distortion...

• ∞ using rankings by value for money ballots;
• Ω(m2/γmin) using 1-approval ballots and ∞ using k-

approval ballots with k > 1;
• Ω(m/γmin) using knapsack ballots; and
• Ω(m) using threshold approval ballots (any threshold).

The proof of this theorem, along with formal definitions
of these ballot formats, are in Appendix C. While none of
these ballot formats yield better distortion than rank bal-
lots, the worst-case distortion of knapsack and approval bal-
lots under public-spirited voting may still be of interest,
given they are used in real-world PB elections (see Foot-
note 1). We thus also derive upper bounds on the distor-
tion possible with these ballot formats (in some cases, for
randomized rules, too) in Appendix C. Most notably, we
show that with 1-approval ballots there is a deterministic
rule with O(m2/γmin) distortion, perfectly matching our
lower bound; for knapsack ballots, there is a deterministic
rule with O(m3/γ2

min) distortion—a striking improvement
over the unit-sum case;3 and for threshold approval ballots,
there is a deterministic rule with O(m2/γmin) distortion.

5 PB with Ranking of Predefined Bundles
We have now shown that for all commonly-studied PB ballot
formats, all deterministic rules incur Ω(m) distortion — an
issue in the practical case where m is large. Motivated by
this, we now study the distortion possible with our novel
ballot format, ranking of predefined bundles (rank-b(P)).

In Sections 5.1-5.3, we will explore various protocols for
using rank-b(P) ballots, which differ in how P is chosen.
For intuition, note that the lowest-distortion choice of P
is simply F ; then, we are effectively in the single-winner
setting and Copeland guarantees constant (in m) distortion.
However, this choice of P comes at a steep elicitation cost,
requiring voters to rank exponentially many bundles.

Our refined goal, therefore, is to design P to permit low
distortion while containing at most polynomial (or pseu-
dopolynomial) bundles. After designing and analyzing var-
ious such choices of P , in Section 6 we explore the practi-
cality of the resulting elictation protocols.

3It is striking how beneficial public spirit is to knapsack ballots:
without it, even with unit-sum utilities, any deterministic rule over
knapsack ballots has Ω(2m/√m) distortion (Benadè et al. 2021).

5.1 Sublinear Distortion
We first propose rank-b with high-low bundles (P = HLB),
which we show permits sublinear distortion.

High-low bundles (HLB): Let L = {a ∈ A : c(a) ⩽
1/⌈√m⌉} be the set of low-cost alternatives and H = A\L be
the set of high-cost alternatives. The high-low bundling rule
(HLB) partitions L into at most ⌈

√
m⌉ feasible bundles,4

and H into an arbitrary partition of feasible bundles. Then it
defines P to be the union of these partitions.

The rank-b(HLB) ballot asks voters to rank |P| ⩽
|H| + |L| = m bundles (and in fact, |P| ⩽ m − |L| ·
(1− 1/ ⌈

√
m⌉), so if there are many low-cost projects,

|P| ≪ m). Finally, in Theorem 9 we show that if Copeland
rule is applied to the voting profile elicited via rank-b(HLB)
on P , the rank-b ballot format dominates all the previous
ballot formats by a factor of O(

√
m).

Theorem 9. distrank-b(HLB)(Copeland) = O(
√
m/γ2

min).
We defer the proof to Appendix D.1. The main idea is

that if A∗ is the optimal bundle, then either sw(L ∩ A∗) or
sw(H ∩ A∗) must have welfare at least sw(A∗)/2. Then,
there must be a bundle in P with welfare at least (1/⌈√m⌉) ·
sw(L ∩ A∗) because L was partitioned into at most ⌈

√
m⌉

bundles, and also one with welfare at least (1/⌈√m⌉)·sw(H∩
A∗) because |H ∩A∗| ⩽ ⌈

√
m⌉.

While this is already a significant improvement on pre-
vious results, there is room for more: crafting predefined
bundles with no information about (and thus no regard for)
voters’ preferences can be both theoretically lossy and prac-
tically unappealing. Thus, we next explore: what distortion
is possible when our bundling rule has some knowledge of
voters’ preferences? We explore this question in Sections
5.2 and 5.3 by defining a two-round elicitation protocol:
in Round 1, we elicit voter preferences using the canonical
rank ballot format; then, in Round 2, we use this preference
information to craft P and deploy ballot rank-b(P). We de-
note this two-round ballot format as rank → rank-b(P).

5.2 Logarithmic Distortion in Two Rounds
We now propose rank-b with tiered-cost bundles (P =
TCB). At a high level, TCB partitions alternatives into
O(logm) tiers by cost, and then uses Iterative Copeland to
select a feasible bundle of m/2ℓ alternatives from the tier con-
taining alternatives with costs between 2ℓ−1

/m and 2ℓ/m.

Tiered-cost bundles (TCB): Set L = ⌈log2 m⌉. For each
ℓ ∈ [L], define the tier Tℓ such that

Tℓ = {a ∈ A : 2
ℓ−1

/m < c(a) ⩽ 2ℓ/m} for all ℓ > 0;

let T0 = {a ∈ A : c(a) ⩽ 1/m}. Then, use Itera-
tive Copeland to pick a bundle Pℓ ⊆ Tℓ of size tℓ =
⌊min(|Tℓ|,max(1,m/2ℓ))⌋. Since c(a) ⩽ 2ℓ/m for each
a ∈ Tℓ, Pℓ is budget-feasible. Set P = {P0, P1, . . . , PL}.
Then, TCB asks voters to rank L ⩽ 1 + ⌈log2 m⌉ bundles.

After asking voters to rank a total of at most m +
1 + ⌈log2 m⌉ objects over both rounds, aggregating via
Copeland achieves distortion O(log(m)/γ4

min):
4This is possible because |L| ⩽ m and any subset of ⌈

√
m⌉

alternatives from L is feasible.



Theorem 10.

distrank→rank-b(TCB)(Copeland) = O(log(m)/γ4
min).

The proof is in Appendix D.2. The key insight is that for
the optimal bundle A∗, sw(A∗) =

∑
ℓ sw(A∗ ∩ Tℓ), so the

best of the 1 + ⌈log2 m⌉ feasible bundles in the sum (call
it A∗ ∩ Tℓ′ ) must be an O(logm) approximation of A∗.
Then, the welfare of the best tℓ-sized subset P ∗

ℓ ⊆ Tℓ′ 2-
approximates that of A∗∩Tℓ′ ; Pℓ constant-approximates the
welfare of P ∗

ℓ (by the distortion of Iterative Copeland); and
the chosen bundle constant-approximates the welfare of Pℓ

(by the distortion of the final Copeland aggregation).

5.3 Constant Distortion in Two Rounds
Finally, we propose rank-b with exhaustive bundles (P =
EB). EB uses the same tiers as TCB, but instead of hav-
ing each bundle consist of alternatives from the same tier, it
crafts bundles by using Iterative Copeland to choose a sub-
set Sℓ ⊆ Tℓ of size tℓ from every tier and putting them
together as ∪ℓSℓ. Ideally, we want to explore every pos-
sible combination of values of t0, . . . , t⌈log2 m⌉, so long as
the resulting bundle is feasible, but a slight optimization is
achieved by only choosing values that are powers of 2.

Exhaustive bundles (EB): Let L = ⌈log2 m⌉ and define
tiers T0, T1, . . . , TL as in TCB. Fix R = ⌊log2 m⌋. For each
ℓ ∈ [L] and r ∈ {0, 20, 21, . . . , 2R} such that |Tℓ| ⩾ r,
choose Pℓ,r ⊆ Tℓ of size r using Iterative Copeland ap-
plied to the rank ballots from Round 1 (if p = 0, sim-
ply choose ∅). Call a sequence t⃗ = (t0, t1, . . . , tL) valid if
tℓ ∈ {0, 20, 21, . . . , 2R} each ℓ ∈ [L], and for such sequence
define Pt⃗ = ∪L

ℓ=0Pℓ,tℓ . In other words, in a valid sequence,
the ℓ-th element represents the number of alternatives that
are selected from Tℓ, and with this definition each valid se-
quence leads to a potential bundle. Finally, let P = {Pt⃗ :

t⃗ is valid ∧ Pt⃗ ∈ F}, so all bundles in P are feasible. Note
that |P| is at most the number of valid sequences, which is
(1 +R)1+L = O((logm)O(logm)) = O(mO(log logm)).5

In exchange for asking voters to rank quasipolynomially
many objects across two rounds, using Copeland to aggre-
gate we achieve constant distortion:

Theorem 11. distrank→rank-b(EB)(Copeland) = O(1/γ4
min).

The full proof is in Appendix D.3, and uses the follow-
ing approach. Let A∗ be an optimal bundle. Then, consider
the sequence t⃗, where tℓ = 2⌊log2 |A∗∩Tℓ|⌋−1 for each ℓ ∈
{0, 1, . . . , L}. Since tℓ ⩽ |A∗∩Tℓ|/2, c(Pℓ,tℓ) ⩽ c(A∗∩Tℓ),
Pt⃗ must be feasible. We then show that its welfare constant-
approximates that of A∗. The only remaining issue is that
when |A∗ ∩ Tℓ| = 1, we cannot set tℓ = 2⌊log2 |A∗∩Tℓ|⌋−1.
This is addressed by taking two cases, depending on whether
much of the welfare of A∗ is contributed by those A∗ ∩ Tℓ

that have size 1 or those that have size at least 2.

5Although this is many bundles, they are similar, potentially
decreasing cognitive load of ranking them: they consist of combi-
nations of at most (1 +R) · (1 + L) = O(m) many bundles Pℓ,r .

6 Discussion
On the practicality of rank-b ballots. We propose that
our ranking of predefined bundles ballot format has three
main practical advantages in addition to low distortion. (1)
It is fully ordinal in contrast to, e.g., threshold approval
votes (Benadè et al. 2021), which ask voters to compare
projects via precise numeric utility values. (2) Comparing
entire feasible bundles may provide voters more context
about cost trade-offs than ballots where they compare in-
dividual projects. (3) The aggregation rules we study always
select a bundle that is on the ballot, allowing every vote fa-
vorably ranking the winning bundle to be interpreted as a
direct endorsement of the final outcome.

While one may worry that doing two rounds of elicitation
is impracticable, PB participants often meet several times,
so doing so is likely feasible. In fact, the flexibility in the
PB process may permit a variety multi-round protocols with
even more favorable trade-offs. A second potential worry is
that low-distortion rank-b ballots may ask voters to rank too
many bundles. We now show that in 967 real PB elections
from https://pabulib.org (with some randomized imputation
of incomplete preferences), even our rank → rank-b(EB)
ballot (with some minor heuristic tweaks that maintain con-
stant distortion) typically requires voters to rank far less than
less than m bundles. Details on data and implementation,
plus some supplemental results, are found in Appendix H.
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Figure 1: The number of bundles rank-b(EB) asks voters to
rank, per alternative, in 967 instances ordered by quantile.

Future directions. rank-b ballots represent an exciting fu-
ture direction in PB: there is an expansive design space of
bundles and multi-round protocols that can potentially drive
down query complexity, guarantee low distortion, satisfy de-
sirable axioms, and be well-received in real-world experi-
ments. Beyond rank-b ballots, there are many questions re-
maining about what public spirit looks like in real demo-
cratic contexts, and how this can be incorporated into so-
cial choice theory. For instance: (1) In what other social
choice contexts — such as matching (Filos-Ratsikas, Fred-
eriksen, and Zhang 2014) and fair division (Halpern and
Shah 2021) — is public spirit a reasonable assumption?, (2)
Can we measure the degree and nature of public spirit result-
ing from different democratic processes, deliberative or oth-
erwise?, and (3) If voters account for a welfare notion other
than utilitarian social welfare (or likewise, we care about
other objectives like Nash welfare or proportional fairness
(Ebadian et al. 2022)), can one prove similar guarantees?
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Benadè, G.; Nath, S.; Procaccia, A. D.; and Shah, N. 2021.
Preference Elicitation For Participatory Budgeting. Man-
agement Science, 65(5): 2813–2827.
Borodin, A.; Halpern, D.; Latifian, M.; and Shah, N. 2022.
Distortion in voting with top-t preferences. In Proceedings
of the 31st International Joint Conference on Artificial Intel-
ligence (IJCAI), 116–122.
Boutilier, C.; Caragiannis, I.; Haber, S.; Lu, T.; Procaccia,
A. D.; and Sheffet, O. 2015. Optimal Social Choice Func-
tions: A Utilitarian View. Artificial Intelligence, 227: 190–
213.
Brill, M.; Forster, S.; Lackner, M.; Maly, J.; and Peters, J.
2023. Proportionality in Approval-Based Participatory Bud-
geting. In Thirty-Seventh AAAI Conference on Artificial In-
telligence, 5524–5531.
Caragiannis, I.; Nath, S.; Procaccia, A. D.; and Shah, N.
2017. Subset Selection Via Implicit Utilitarian Voting. Jour-
nal of Artificial Intelligence Research, 58: 123–152.
Caragiannis, I.; and Procaccia, A. D. 2011. Voting Al-
most Maximizes Social Welfare Despite Limited Commu-
nication. Artificial Intelligence, 175(9–10): 1655–1671.

De Vries, M. S.; Nemec, J.; and Špaček, D. 2022. Interna-
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A Missing Details from Section 2
A.1 Proof of Lemma 1
Instead of directly proving Lemma 1, we prove a stronger version that helps us with the robustness results in the following
sections. Note that Lemma 1 is the special case of Lemma 5 with c = 0.
Lemma 5. (Robust Lemma 1) Let A1, A2 ⊆ A be any two subsets of alternatives. Fix any α ⩾ 0 and define NA1≻A2 = {i ∈
N : α·vi(A1) ⩾ vi(A2)}. For any c < 1, fix an arbitrary subset of voters N ′

A1≻A2
⊆ NA1≻A2

of size
∣∣N ′

A1≻A2

∣∣ = c·|NA1≻A2
|.

Suppose that for all voters i ∈ N ′
A1≻A2

public spirit is small with γi < γmin, and for all voters i ∈ NA1≻A2
\N ′

A1≻A2
public

spirit is large with γi ⩾ γmin. Then:

sw(A2)

sw(A1)
⩽ α ·

(
1− γmin

γmin

n

|NA1≻A2 | (1− c)
+ 1

)
.

Proof. The proof is the same as the proofs of Lemmas 3.1 and 5.1 by Flanigan, Procaccia, and Wang (2023). Let ÑA1≻A2
=

NA1≻A2
\N ′

A1≻A2
. Indeed, for each voter i ∈ ÑA1≻A2

, we know that αvi(A1) ⩾ vi(A2), and so:

α

(
(1− γi)ui(A1) + γi

sw(A1)

n

)
⩾ (1− γi)ui(A2) + γi

sw(A2)

n
⩾ γi

sw(A2)

n
.

Dividing by γi and using the fact that 1−γi

γi
is decreasing in γi we have:

α

(
1− γmin

γmin
· ui(A) +

sw(A1)

n

)
⩾

sw(A2)

n
.

Summing over all voters in ÑA1≻A2 ,

α

(
1− γmin

γmin

∑
i∈ÑA1≻A2

ui(A1) +
sw(A1)

∣∣∣ÑA1≻A2

∣∣∣
n

)
⩾

sw(A2)
∣∣∣ÑA1≻A2

∣∣∣
n

.

Using the fact that
∑

i∈ÑA1≻A2
ui(A1) ⩽

∑
i∈N ui(A1) = sw(A1),

α

1− γmin

γmin
sw(A1) +

sw(A1)
∣∣∣ÑA1≻A2

∣∣∣
n

 ⩾
sw(A2)

∣∣∣ÑA1≻A2

∣∣∣
n

.

We know that
∣∣∣ÑA1≻A2

∣∣∣ ⩾ (1− c) |NA1≻A2
|. So, after some simplification, we finally get the desired upper bound:

sw(A2)

sw(A1)
⩽ α

(
1− γmin

γmin

n

|NA1≻A2 | (1− c)
+ 1

)
.

B Missing Details from Section 3
B.1 Proof of Theorem 2
Theorem 2. Every deterministic rule f has distortion

distrank(f) ∈ Ω (m/γmin) .

Proof. Consider an instance with A = {a, b1, . . . bm−1}, where a costs 1 and every other alternative costs 1/(m − 1). Define
p = 1−γmin

1−γmin+m2 . Let N1 be a set of n(1 − p) voters and N2 = N \ N1. Suppose that members of N1 submit ranking
(a ≻ b1 ≻ . . . ≻ bm−1) and members of N2 vote (b1 ≻ . . . ≻ bm−1 ≻ a).

Now consider two cases.

Case 1: If the aggregation rule selects a, consider utility matrix U where members of N1 have utility of γminp
1−pγmin

for a and 0 for
the rest, while members of N2 have utility of 0 for a and 1 for the rest of the alternatives. This means sw(a) = n(1−p) γminp

1−γminp
,

and sw(b) = np for b ∈ A \ {a}. Alongside with the PS-vector γ⃗ = [γmin]
n we have value matrix Vγ⃗,U first of all we have to

make sure that this is consistent with the input profile. For i ∈ N1,

vi(a) = (1− γmin)
γminp

1− γminp
+ γmin(1− p)

γminp

1− γminp

= (1− γminp)
γminp

1− γminp
= γminp,



and vi(bj) = (1−γmin) ·0+γminp = γmin ·p. Therefore, the value matrix is consistent with the ranking of the members of N1.
On the other hand for i ∈ N2 we have, vi(a) = γmin(1−p) γminp

1−γminp
, and vi(bj) = 1−γmin+γminp, where for p = 1−γmin

1−γmin+m2

we have:

vi(a) =
γ2
minm

2 (1− γmin)

(m2 + 1− γmin) (m2 + (1− γmin)2)
,

vi(bj) =
(m2 + 1)(1− γmin)

m2 + 1− γmin
.

This gives us:

vi(a)

vi(bj)
=

γ2
minm

2

(m2 + 1) (m2 + (1− γmin)2)
⩽ 1

=⇒ vi(bj) ⩾ vi(a),

and therefore the votes of voters in N2 are consistent with the value matrix Vγ⃗,U .
By picking budget-feasible set {b1, . . . , bm−1} we can get a social welfare of n(m−1)p, while instead we got n(1−p) γminp

1−pγmin

by choosing a. This leaves us with a distortion of

(m− 1)(1− pγmin)

(1− p)γmin
.

Since p ⩾ 0 and γmin ⩽ 1, we know p ⩾ pγmin, and so 1− pγmin ⩾ 1− p. Therefore, we get the desired distortion:

(m− 1)(1− pγmin)

(1− p)γmin
⩾

m− 1

γmin
.

Case 2: If the aggregation rule does not select a, consider the utility matrix U where members of N1 have utility of 1 for a
and 0 for the rest, while members of N2 have utility of 0 for a and γmin(1−p)

1−γmin(1−p) for the rest of the alternatives. This gives us

sw(a) = n(1−p), and sw(b) = np γmin(1−p)
1−γmin(1−p) for b ∈ A\{a}. Again we have to check that the value matrix Vγ⃗,U is consistent

with the input profile. For i ∈ N1 we have: vi(a) = 1− γmin + γmin(1− p) = 1− γminp, and vi(bj) = γminp
γmin(1−p)

1−γmin(1−p) .
The value matrix is consistent with the ranking of the members of N1, i.e. vi(a) ⩾ vi(bj), as:

γmin ⩽ 1 =⇒ 0 ⩽ γminp ⩽ 1− γmin(1− p)

=⇒ γminp
1

1− γmin(1− p)
⩽ 1

=⇒ γminp
γmin(1− p)

1− γmin(1− p)
⩽ 1− γminp.

Moreover, for i ∈ N2 we have: vi(a) = γmin(1− p), and

vi(bj) = (1− γmin)
γmin(1− p)

1− γmin(1− p)
+ γminp

γmin(1− p)

1− γmin(1− p)

= (1− γmin(1− p))
γmin(1− p)

1− γmin(1− p)
= γmin(1− p).

So we have vi(a) = vi(bj) which means that the value matrix is consistent with the ranking of the members of N2 as well.
Since a is not picked by the aggregation rule, we get a maximum social welfare of (m − 1)np γmin(1−p)

1−γmin(1−p) when we could
have gotten a social welfare of np from a, meaning a distortion of:

distrank(f) ⩾
1− γmin(1− p)

γminp(m− 1)
⩾

m− 1

γmin
.

All the conditions above hold for m ⩾ 2, so we have a distortions of at least: m−1
γmin

.

B.2 Proof of Theorem 3
Theorem 3. For all deterministic single-winner rules f ,

distsingle-win
rank (f) ∈ Ω(min{m/γmin, 1/γ

2
min}).



Proof. Suppose we have m alternatives a1, . . . , am and n voters each with the same PS-value of γ = γmin. For ease of
exposition, let n be divisible by m. Our construction consists of m types of voters, equally distributed with n/m voters of each
type. Let Nk be the set of voters of type k. Suppose each voter type votes as follows,

N1 : a1 ≻ a2 ≻ . . . ≻ am−1 ≻ am
N2 : a2 ≻ a3 ≻ . . . ≻ am ≻ a1

...
Nm−1 : am−1 ≻ am ≻ . . . ≻ am−3 ≻ am−2

Nm : am ≻ a1 ≻ . . . ≻ am−2 ≻ am−1

so that Ni prefers alternative ai most, and cycles through the rest.
Without the loss of generality, suppose the voting rule picks a1. We will set the utilities so that sw(am) > sw(am−1) >

· · · > sw(a2) > sw(a1). To do so, set for all voters i,

ui(am) =


1 if i ∈ Nm

0 if i ∈ N1

ui(a1) otherwise
.

For all k from 1 to m− 1 and for all i ∈ N1,

ui(ak) =
γ

1− γ

(
sw(am)− sw(ak)

n

)
,

and for all j from 2 to m, for all i ∈ Nj , for k from 1 to m− 1, when k < j − 1:

ui(ak) =
γ

1− γ

(
sw(aj−1)− sw(ak)

n

)
,

and when k ⩾ j:

ui(ak) =
γ

1− γ

(
sw(am)− sw(ak)

n
+

sw(aj−1)− sw(a1)

n

)
,

and ui(aj−1) = 0.
Then, for k from 1 to m− 1,

sw(ak) =

m∑
j=1

∑
i∈Nj

ui(ak)

=
γ

1− γ
· 1
n

( ∑
i∈N1

(
sw(am)− sw(ak)

)
+

k∑
j=2

∑
i∈Nj

(
sw(am)− sw(ak) + sw(aj−1)− sw(a1)

)
+ 0

+

m∑
j=k+2

∑
i∈Nj

(
sw(aj−1)− sw(ak)

))

=
γ

1− γ
· 1
n
· n

m

(k − 1)(sw(am)− sw(a1))− (m− 1)sw(ak) +

m∑
j=1,j ̸=k

sw(aj)


=

γ

1− γ
· 1

m

(k − 1)(sw(am)− sw(a1))−m · sw(ak) +

m∑
j=1

sw(aj)

 .

Let S =
∑m

j=1 sw(aj). Adding γ
1−γ sw(ak) to both sides of the above and rearranging, we get:

sw(ak) =
γ

m
((k − 1)(sw(am)− sw(a1)) + S) .

In particular, sw(a1) =
γ
mS, so

sw(ak) =
γ

m

(
(k − 1)sw(am) + S · m− (k − 1)γ

m

)
.



Via the same reasoning,

sw(am) =

m∑
j=1

∑
i∈Nj

ui(am)

=
γ

1− γ
· 1
n

(m−1∑
j=2

∑
i∈Nj

(
sw(aj−1)− sw(a1)

))
+

n

m

=
γ

1− γ
· 1

m

(m−1∑
j=2

(
sw(aj−1)− sw(a1)

))
+

n

m

=
γ

1− γ
· 1

m

(
S − (m− 2)sw(a1)− sw(am)− sw(am−1)

)
+

n

m

=
γ

1− γ
· 1

m

(
S − γ(m− 2)

m
S − sw(am)− γ

m

(
(m− 2)sw(am) + S · m− (m− 2)γ

m

))
+

n

m

=
γ

1− γ
· 1

m

(
m− (m− 2)γ

m
· m− γ

m
S − m+ γ(m− 2)

m
sw(am)

)
+

n

m

=
γ

1− γ
· 1

m

(
m− (m− 2)γ

m
· m− γ

m
S

)
+

n

m
− γ(m+ γ(m− 2))

(1− γ)m2
sw(am).

Adding γ(m+γ(m−2))
(1−γ)m2 sw(am) to both sides and rearranging:

sw(am) =
(1− γ)m2

(1− γ)m2 + γ(m+ γ(m− 2))

(
γ

1− γ
· 1

m

(
m− (m− 2)γ

m
· m− γ

m
S

)
+

n

m

)
=

γm

(1− γ)m2 + γ(m+ γ(m− 2))

(
m− (m− 2)γ

m
· m− γ

m
S

)
+

(1− γ)mn

(1− γ)m2 + γ(m+ γ(m− 2))

=
γ(m− (m− 2)γ)

(1− γ)m2 + γ(m+ γ(m− 2))
· m− γ

m
S +

(1− γ)nm

(1− γ)m2 + γ(m+ γ(m− 2))
.

Now, we can finally solve for S:

S =

m∑
k=1

sw(ak)

= sw(am) +
γ

m

m−1∑
k=1

(
(k − 1)sw(am) + S

m− (k − 1)γ

m

)

= sw(am) +
γ(m− 1)(m− 2)

2m
sw(am) +

γ

m2
S

m−1∑
k=1

(m− (k − 1)γ)

=
2m+ γ(m− 1)(m− 2)

2m
sw(am) +

γ

m2
S · (m− 1)(2γ +m(2− γ))

2

=
2m+ γ(m− 1)(m− 2)

2m

(
γ(m− (m− 2)γ)

(1− γ)m2 + γ(m+ γ(m− 2))
· m− γ

m
S +

(1− γ)nm

(1− γ)m2 + γ(m+ γ(m− 2))

)
+ S · γ(m− 1)(2γ +m(2− γ))

2m2
.

After simplifying this, we get:

S = n
2γ + γm2 + (2− 3γ)m

2(1− γ)m2 + 2γ(γ + 1)m− 4γ2
.

This then implies that

sw(am) =
n

m
·
2m2(1− γ) +

(
m(2− 3γ) + 2γ +m2γ

)
γ

2(1− γ)m2 + 2γ(γ + 1)m− 4γ2
,

and so we ultimately get the following social welfare for each alternative, for k from 1 to m− 1:

sw(ak) =
n

m
·
γ
(
2(1− γ)km+ γ

(
m2 −m+ 2

))
2(1− γ)m2 + 2γ(γ + 1)m− 4γ2

.



The chain of inequalities sw(am) > · · · > sw(a1) does indeed hold, and knowing this, we can verify that the above utilities
are non-negative.

This gives distortion, after simplifying:

sw(am)

sw(a1)
= 1 +

2(1− γ)m2

γ (2γ + γm2 + (2− 3γ)m)
.

To show that this is asymptotically as desired, we can write this as:

1 +
2(1− γ)

γ

(
2γ + γm2 + (2− 3γ)m

m2

)−1

.

Since, for any positive a, b, we have that (a+ b)−1 ⩾ 1
2 min{a−1, b−1}, this expression is in:

Ω

(
1 +

1− γ

γ
min

{
m2

γ(m2 + 2)
,

m2

m(2− 3γ)

})
= Ω

(
1 +

1− γ

γ
min

{
1

γ
,m

})
,

which in the γ → 0 regime is asymptotic in Ω
(

min{1/γ,m}
γ

)
.

B.3 Proof of Lemma 3
Lemma 3 (PB → Committee). Fix any d ⩾ 1. If there exists a randomized k-committee selection rule fm′,k with distortion
at most d for each m′ ⩽ m and k ∈ [m′], then there exists a randomized participatory budgeting rule f with distortion at most
distrank(f) ⩽ 2d · (⌈log2(m)⌉+ 1).

Proof. Fix any PB instance. Split the alternatives into buckets A0, A1, . . . , A⌈log2(m)⌉, where A0 = {a ∈ A : ca ⩽ 1/m} and
for i ̸= 0, Ai =

{
a ∈ A : 2i−1/m < ca ⩽ 2i/m

}
.

The randomized PB rule f is as follows:

1. Sample j ∈ {0, 1, . . . , ⌈log2(m)⌉} uniformly.
2. Consider the restricted instance with only the alternatives in Aj . That is, with m′ = |Aj | and k = min(m′,

⌊
m
2j

⌋
), use the

k-committee selection rule fm′,k to pick a set of k alternatives and return it.

Let A∗ be the optimal budget-feasible subset of the alternatives, L∗
j be the optimal

⌊
m
2j

⌋
-committee of Aj , and Lj be the one

selected by the k-committee rule. For j ̸= 0, A∗ ∩ Aj is of size at most m
2j−1 . That means sw(A∗ ∩ Aj) ⩽ 2sw(L∗

j ) for any
j ̸= 0.

In addition, for j = 0, L∗
0 = A0 which implies sw(A∗ ∩Aj) ⩽ sw(L∗

j ). Since the k-committee selection rule has distortion
of d for any j, we have sw(L∗

j ) ⩽ dsw(Lj), implying that sw(A∗ ∩ Aj) ⩽ 2dsw(Lj). Letting δ be the distribution of the
mechanism output, we deduce the desired bound:

EL∼δ[sw(L)] =
1

⌈log2(m)⌉+ 1

⌈log2(m)⌉∑
j=0

sw(Lj)

⩾
1

⌈log2(m)⌉+ 1

⌈log2(m)⌉∑
j=0

sw(A∗ ∩Aj)

2d

⩾
sw(A∗)

2d(⌈log2(m)⌉+ 1)
.

B.4 Proof of Lemma 4
Lemma 4 (Committee → Single-Winner). Fix any k ∈ [m] and d ⩾ 1. If there exists a single-winner rule fm′ with distortion
at most d for each m′ ⩽ m, then there exists a k-committee selection rule f with distortion at most d. If fm′ is deterministic
then so is f .

Proof. Let A∗ = {a∗1, . . . , a∗k} be the optimal budget-feasible set, sorted from highest social welfare to the lowest so that
i < j =⇒ sw(a∗i ) ⩾ sw(a∗j ). Let S denote the set of alternatives that our algorithm picks.

Consider the ith iteration of the procedure. Let a+i be the alternative with the highest social welfare among the remaining
alternatives, and ai be the random alternative picked by the single-winner voting rule in this round. We know that sw(a+i ) ⩾

sw(a∗i ) and since the single-winner rule has expected distortion of d, we have E[sw(ai)] ⩾
sw(a+

i )

d which implies E[sw(ai)] ⩾
sw(a∗

i )
d . Summing this over all iterations and using linearity of expectation, we get that



k∑
i=0

E[sw(ai)] ⩾
k∑

i=0

sw(a∗i ) / d

=⇒ sw(A∗) /E[sw(S)] ⩽ d.

B.5 Proof of Theorem 5
Theorem 5. distsingle-win

rank (Maximal Lottery) ∈ O (1/γmin) .

Proof. Let a∗ be the optimal alternative. If we pick a∗ or an alternative b that beats a∗ in a pairwise election, by Lemma 1 we
get distortion:

sw(a∗)

sw(b)
⩽ 2

1− γmin

γmin
+ 1.

Let the set of such alternatives be A′ = {b ∈ A : |{i ∈ N : b ≻i a
∗}| ⩾ n/2}. Then, the distortion of our rule is:

sw(a∗)∑
a∈A p(a)sw(a)

⩽
sw(a∗)∑

a∈A′ p(a)sw(a)

⩽
sw(a∗)

(mina∈A′ sw(a))
∑

a∈A′ p(a)

⩽ 2
sw(a∗)

mina∈A′ sw(a)
⩽ 4

1− γmin

γmin
+ 2 =

4

γmin
− 2.

B.6 Proof of Theorem 6
Theorem 6. For all randomized rules f ,

distrank(f) ∈ Ω(log(m)).

Proof. Define k = ⌈
√
m⌉ − 1 and partition the alternatives into k+ 1 buckets A1, . . . , Ak, B such that for ℓ ∈ [k], Aℓ consists

of ℓ alternatives with cost 1/ℓ each, and B includes the rest of the alternatives with cost 1 each. Note that each Aℓ is a feasible
subset.

Suppose that all the voters have the same ranking where they rank every alternative in Aℓ higher than every alternative in Aℓ′

for all ℓ < ℓ′ (and breaks ties within each Aℓ arbitrarily), and rank members of B at the end of their ranking.
Consider any aggregation rule. For each a ∈ A, let pa denote the marginal probability of alternative a being included in

the distribution returned by the rule on this profile. For each ℓ ∈ [k], define p̄ℓ = 1
ℓ

∑
a∈Aℓ

pa as the average of the marginal
probabilities of alternatives in Aℓ being chosen. Since the rule returns a distribution over budget-feasible subsets of alternatives
(with total cost at most 1), the expected cost under this distribution is also at most 1. Due to additivity of cost and linearity of
expectation, the expected cost can be written as∑

a∈A

pa · ca ⩾
∑
ℓ∈[k]

(
1

ℓ

∑
a∈Aℓ

pa

)
=
∑
ℓ∈[k]

p̄ℓ ⩽ 1. (2)

Next, fix an arbitrary t ∈ [k]. Consider the following consistent utility function of the agent (which, in this case, is also her
PS-value function): v(a) = u(a) = 1 if a ∈ ∪ℓ∈[t]Aℓ and v(a) = u(a) = 0 otherwise. It is evident that the budget-feasible
subset with the highest social welfare (i.e., one which contains the highest number of alternatives of value 1 to the agent) is At,
and sw(At) = t. In contrast, using the additivity of the utility function over the alternatives and linearity of expectation, we can
write the expected social welfare under the rule as

∑
a∈∪ℓ∈[t]Aℓ

pa · 1 =
∑

ℓ∈[t] ℓ · p̄ℓ, which means the distortion is at least

Dt =
t∑

ℓ∈[t] ℓ · p̄ℓ
.

Because t ∈ [k] was fixed arbitrarily, we get that the distortion is at least D = maxt∈[k] Dt. Our goal is to show that
D = Ω(logm).

Note that for each t ∈ [k], we have
t∑

ℓ∈[t] ℓ · p̄ℓ
⩽ D ⇒

∑
ℓ∈[t]

ℓ · p̄ℓ ⩾
t

D
.

Dividing both sides by t(t+ 1), we have that∑
ℓ∈[t]

ℓ

t(t+ 1)
· p̄ℓ ⩾

1

D · (t+ 1)
,∀t ∈ [k].



Summing over t ∈ [k], the right hand side sums to (Hk+1 − 1)/D. On the left hand side, the coefficient of each p̄ℓ is

ℓ

k∑
t=ℓ

1

t(t+ 1)
= ℓ

(
k∑

t=ℓ

1

t
− 1

t+ 1

)
= ℓ

(
1

ℓ
− 1

k + 1

)
⩽ 1.

Hence, the left hand side sums to at most
∑

ℓ∈[k] p̄ℓ ⩽ 1. Since the left hand side is at least the right hand side, we have that

1 ⩾
Hk+1 − 1

D
⇒ D ⩾ Hk+1 − 1 = H⌈√m⌉ − 1,

which completes the proof after observing that

H⌈√m⌉ ⩾ ln(
⌈√

m
⌉
) ⩾ ln(

√
m) = ln(m)/2.

B.7 Proof of Theorem 7

Theorem 7. For all randomized single-winner rules f ,

distsingle-win
rank (f) ∈ Ω (min {m, 1/γmin}) .

Proof. Use the same input profile ρ⃗ as in the proof of Theorem 3. Let p(ai) be the probability that ai is picked by rule f and
without the loss of generality, suppose that amin = arg mina p(a).

Then, for any j, 1 =
∑

i p(ai) ⩾ p(aj) + (m− 1)p(amin), so p(aj) ⩽ 1− (m− 1)p(aj)
By the proof of Theorem 3, sw(a1) ⩽ sw(a2) ⩽ · · · ⩽ sw(am), and so we can maximize social welfare by picking am.
The expected social welfare of f is at most:

Ea∼f(ρ⃗)[sw(a)] =
1

m
sw(am) +

m− 1

m

m−1
max
k=1

sw(ak)

=
n

m(2(1− γ)m2 + 2γ(γ + 1)m− 4γ2)
·
(
2m2(1− γ) +

(
m(2− 3γ) + 2γ +m2γ

)
γ

m

+
m− 1

m
· (γ

(
2(1− γ)(m− 1)m+ γ

(
m2 −m+ 2

))
)

)
=

n

m
· γ(γ − 2)(m− 2)(m− 1)− 2m

2((1− γ)m+ 2γ)(m− γ)
.

So, the distortion is:

sw(am)

Ea∼f(ρ⃗)[sw(a)]
=

n

m
·
2m2(1− γ) +

(
m(2− 3γ) + 2γ +m2γ

)
γ

2(1− γ)m2 + 2γ(γ + 1)m− 4γ2

·
(
n

m
· γ(γ − 2)(m− 2)(m− 1)− 2m

2((1− γ)m+ 2γ)(m− γ)

)−1

= 1 +
2(1− γ)(m− 1)((1− γ)m+ 2γ)

γ(2− γ)(m− 2)(m− 1) + 2m

⩾ 1 +
2(1− γ)2(m− 1)m

γ(2− γ)(m− 2)(m− 1) + 2m
.

Since, for any positive a, b, we have that (a+ b)−1 ⩾ 1
2 min{a−1, b−1}:

sw(am)

Ea∼f(ρ⃗)[sw(a)]
∈ Ω

(
(1− γ)2 min

{
2(m− 1)m

γ(2− γ)(m− 2)(m− 1)
,
2(m− 1)m

2m

})
∈ Ω

(
(1− γ)2 min

{
1

γ
,m

})
,

which in the γ → 0 regime, is Ω (min {1/γ,m}).



C Missing Details from Section 4
The main goal of this section is to formally define the ballot formats mentioned in Section 4 and to prove Theorem 8. In each
subsection we focus on one of the ballot formats and prove bounds on the optimal achievable distortion with that ballot format
using either deterministic or randomized rules. Furthermore, in Table 2 we show an overview of all the bounds that we prove in
this paper, and compare them to the results of Benadè et al. (2021) under the unit-sum assumption.

Following the model of Benadè et al. (2021), a ballot format X : Rm
⩾0 × [0, 1]m → LX turns every PS-value function into

a “vote”, which takes values from a (usually finite) set LX, sometimes using the cost function over the alternatives. Under this
ballot format, each voter i submits the vote ρi = X(vi); together, these votes form the input profile ρ⃗ = {ρ1, . . . , ρn}. We use
Vγ⃗,U ▷X ρ⃗ to indicate that PS-value matrix Vγ⃗,U induces input profile ρ⃗ under ballot format X. Alternatively, we say that ρ⃗ is
consistent with Vγ⃗,U . We omit X when it is clear from the context.

Public-Spirit Unit-Sum

SW Deterministic Θ(1/γmin ·min{m, 1/γmin}) Θ(m2)

Randomized Θ(min{m, 1/γmin}) Θ(
√
m)

PB Deterministic Ω (m/γmin), O (m/γmin ·min{m, 1/γmin}) Θ(m2)

Randomized Ω (logm), O (min{m, (logm)/γmin}) Ω(
√
m), O (

√
m logm)

Table 1: Asymptotic (in m, γmin) distortion bounds for rankings-by-value, comparing results for Single-winner (SW) and
Participatory Budgeting (PB) ballots. The unit-sum results are derived in Benadè et al. (2021) and are included for comparison.

Public-Spirit Unit-Sum

k-approvals (k > 1) ∞ ∞
1-approval Θ

(
m2
/γmin

)
Θ(m2)

Knapsack Ω (m/γmin), O
(
m3
/γ2

min

)
Ω(2

m
/
√
m), O (m2m)

Single Round rbp O (
√
m/γ2

min) Ω(m2)

Two Round rbp O ((logm)/γ4
min) Ω(m2)

Table 2: Asymptotic (in m, γmin) deterministic distortion bounds across ballot formats other than ranking-by-value. The colored
rows indicate new ballots introduced in this paper. The unit-sum results are derived in Benadè et al. (2021) and are included for
comparison.

C.1 Rankings by Value for Money
In the ballot format rankings by value for money (vfm), Lvfm is still the set of all rankings over alternatives, but now each voter
i submits a ranking ρi of the alternatives by their PS-value divided by cost, i.e., such that for every a, b ∈ A, vi(a)/c(a) >
vi(b)/c(b) implies a ≻ρi

b; the voter can break ties arbitrarily.

Deterministic Rules Benadè et al. (2021) show that no deterministic rule for rankings by value for money can achieve
bounded distortion, even under the unit-sum assumption. Moreover, in their construction, all voters submit the same ranking.
Adding any amount of public spirit would therefore leave the rankings and their analysis unchanged, implying that the distortion
remains unbounded even with public spirit. We formalize this in Theorem 12.

Theorem 12 (lower bound). For rankings by value for money, every deterministic rule f has unbounded distortion:
distvfm(f) = ∞.

Proof. We use the exact same construction used by Benadè et al. (2021). Fix a, b ∈ A, and let ca = ϵ > 0 and cx = 1 for all
x ∈ A \ {a}. Construct an input profile ρ⃗ where each voter has alternatives a and b in positions 1 and 2, and let f be some
deterministic aggregation rule.

If f(ρ⃗, c) ̸= a, then construct a utility profile where ui(a) = 1 and ui(x) = 0 for all x ∈ A \ {a}. Then the distortion is
infinite.

If f(ρ⃗, c) = a, then construct a utility profile where ui(a) = ϵ, ui(b) = 1 and ui(x) = 0 for x ∈ A \ {a, b}. Then,

vi(a)

ca
=

(1− γi)ϵ+ γi
(nϵ)
n

ϵ
=

(1− γi) + γi
1

=
vi(b)

cb
,



and so the ranking of each voter is consistent with this utility profile. But, the distortion is:

n

nϵ
=

1

ϵ
,

which as ϵ → 0 tends to infinity.

Randomized Rules For randomized rules, we show the same upper bound (up to a constant) for rankings by value for money
as for rankings by value. The result uses a similar construction, too: First, we bucket alternatives as in Lemma 3, so that the
alternatives in each bucket differ in cost by a factor of at most 2. Due to these similar costs, a ranking by value for money of
the alternatives within any is a good approximation of their ranking by value, allowing us to apply our reductions from PB to
committee selection to single-winner selection, except we lose an additional factor of 2.
Theorem 13 (upper bound). For rankings by value for money, there exists a randomized rule f with distortion

distvfm(f) ⩽ 8 (⌈log2(m)⌉+ 1)
(
2γ−1

min − 1
)
.

Lemma 6. For rankings by value for money, there exists a k-committee-selection voting rule f such that on all sets of alterna-
tives with costs in [2−ℓ, 21−ℓ] for some ℓ ⩾ 0, f has distortion 4(2γ−1

min − 1).

Proof. Notice that if a beats b, then vi(a)/ca ⩾ vi(b)/cb at least n/2 times. Since the costs differ by at most a factor of 2,
2vi(a) ⩾ vi(b).

We can use the exact same rule as in Theorem 5. Indeed, everything is the same, except that when b beats a∗ in a pairwise
election (i.e. at least n/2 times), we get the following distortion by Lemma 1:

sw(a∗)

sw(b)
⩽ 2

(
2
1− γmin

γmin
+ 1

)
.

Then, the distortion of our rule is, by the same analysis in Theorem 5:

8
1− γmin

γmin
+ 4.

From here, we can convert this single winner rule into a committee selection rule with the same distortion by using Lemma 4.

Having proved this lemma, we utilise an argument similar to Lemma 3.

Proof of Theorem 13. Let g be the rule in Lemma 6, and let the distortion it achieves,
(
4 1−γmin

γmin
+ 2
)

, be d. By the same
mechanism in Lemma 3, we will convert g to a ranking by value per cost rule.

Indeed, divide the alternatives into buckets A0, A1, . . . , A⌈log2(m)⌉, where for i ̸= 0:

Ai =

{
a ∈ A :

2i−1

m
< ca ⩽

2i

m

}
,

and
A0 = {a ∈ A : ca ⩽ 1/m}.

Recall the mechanism used:

1. Pick the bucket Aj uniformly at random.
2. Consider the restricted election with only the alternatives in Aj .
3. Use g to pick the top

⌊
m
2j

⌋
alternatives in the restricted election.

Consider any PB instance. Split the alternatives into buckets A0, A1, . . . , A⌈log2(m)⌉, where for i ̸= 0:

Ai =
{
a ∈ A : 2i−1/m < ca ⩽ 2i/m

}
,

and
A0 = {a ∈ A : ca ⩽ 1/m}.

The randomized PB rule f is as follows:

1. Pick j ∈ {0, 1, . . . , ⌈log2(m)⌉} uniformly at random.
2. Consider the restricted instance with only the alternatives in Aj .
3. With m′ = |Aj | and k = min(m′,

⌊
m
2j

⌋
), use the k-committee selection rule fm′,k on this restricted instance to pick a set

of k alternatives and return it.



Let A∗ be the optimal budget-feasible subset of the alternatives, L∗
j be the optimal

⌊
m
2j

⌋
-committee of Aj , and Lj be the one

selected by the k-committee rule. For j ̸= 0, A∗ ∩ Aj is of size at most m
2j−1 . That means sw(A∗ ∩ Aj) ⩽ 2sw(L∗

j ) for any
j ̸= 0.

In addition for j = 0, L∗
0 = A0 which implies sw(A∗ ∩ Aj) ⩽ sw(L∗

j ). Since the k-committee selection rule has distortion
of d for any j we have sw(L∗

j ) ⩽ dsw(Lj) which gives us sw(A∗ ∩ Aj) ⩽ 2dsw(Lj). Let δ be the distribution of the output
of the mechanism, we have:

EL∼δ[sw(L)] =
1

⌈log2(m)⌉+ 1

⌈log2(m)⌉∑
j=0

sw(Lj)

⩾
1

⌈log2(m)⌉+ 1

⌈log2(m)⌉∑
j=0

sw(A∗ ∩Aj)

2d

⩾
sw(A∗)

2d(⌈log2(m)⌉+ 1)
,

which gives us the desired distortion bound.

Whether this is (asymptotically) the best distortion that randomized rules for rankings by value for money can achieve
remains an open question.

C.2 k-approval ballots
Approval-Based Ballots Another popular type of ballot — especially in participatory budgeting — is to ask voters to simply
approve their favorite items, rather than rank items relative to one another. The most common type of approval-based ballots
in practice is the k-approval ballot, in which voters “vote” by identifying their k favorite alternatives. However, this ballot
format has an important limitation in the PB context: as we show, it allows voters to approve items or sets of items that are
not budget-feasible. In the worst case, this can leave the voting rule with little or no information about which budget-feasible
allocations are desirable, in which case it can do nothing better than making an arbitrary choice.

A natural potential fix for this is allowing voters to approve only sets of items that are budget-feasible. This is can be
achieved by either restricting our use to 1-approval ballots (and removing all items which individually exceed the budget), or
using Knapsack ballots, an approval-based ballot format in which voters can approve any set of projects whose total cost does
not exceed the budget. We explore both these directions in this and the next subsections.

For the ballot format k-approval (k-app), the set of possible ballots Lk-app is the set of all subsets of size k of A. That means
each voter submits the set of her top k alternatives (breaking the ties arbitrarily). We start by showing that asking voters to
approve more than one alternative leads to an unbounded distortion.

Theorem 14 (LB - Deterministic). For k-approval ballot format with k ⩾ 2, any deterministic PB rule has unbounded distor-
tion.

Proof. Suppose we are using k-approval ballots. Let A be the alternatives, and suppose that each a ∈ A has cost 1
k−1 . Suppose

all agents have the same utilities, where ϵ > 0 is arbitrarily small, giving 1 utility to a1, ϵ utility for all of a2 . . . ak, and 0 for
all A \ {a1, . . . , ak}. Then, everyone’s public-spirited values are identical to their utilities. All agents approve a1, . . . , ak, and
the deterministic rule must pick k − 1 of these arbitrarily. Let the deterministic rule pick a2 . . . ak. The best possible welfare is
n, achieved by any k − 1-subset including a1; the winner has welfare ϵn, making the distortion 1

ϵ (unbounded).

These lower bounds were for k ⩾ 2; one can also realize the same bounds with k = 1, where all voters approve items
whose costs exceed 1, giving the voting rule no information about which budget-feasible set to choose. However, an obvious
fix for this is to remove all items ahead of time that exceed the budget. If we assume every individual item has cost at most 1,
then 1-approval ballots ensure that voters can only approve budget-feasible sets, escaping the problem described above. Then,
1-approval-based ballots are akin to plurality voting, and they permit the following positive result:

Proposition 1 (UB, 1-app, Deterministic). If all alternatives have cost at most 1, then for 1-approval ballot format, there exists
a deterministic voting rule f with distortion

dist1-app(f) ∈ O
(

m2

γmin

)
.

Proof. Pick the most approved alternative a. This is in fact the plurality winner and by Theorem 1, the plurality rule achieves
the claimed distortion.

The following proposition shows that this is the best we can hope for.



Proposition 2 (LB, 1-app, Deterministic). For 1-approval ballot format, every deterministic rule f has distortion

dist1-app(f) ∈ Ω

(
m2

γmin

)
.

Proof. We take m to be sufficiently large. Consider an instance with m
2 alternatives a1, . . . , am/2 of cost 1 and m

2 alternatives
b1, . . . , bm/2 of cost 2

m , and all the voters have the same PS-value of γ = γmin. Suppose 2n
m voters vote for each ai.

If a PB rule picks the bundle b1, . . . , bm/2, then consider the instance where every voter assigns a value of 1 to each ai and a
value of 0 to each bi. This is consistent with the input, and results in infinite distortion.

Instead, suppose the PB rule, without the loss of generality, picks am/2. Then, suppose that every voter who votes for am/2

gives it a value of γ m−2
m−2γ , and everything else a value of 0, and suppose that all other voters give their top choice a value of 1,

the bi a value of m−γ(m−2)
m−2γ , and everything else a value of zero.

Then, sw(bi) =
m−γ(m−2)

m−2γ · m−2
m · n for all i from 1 to m

2 , and sw(ai) =
2n
m for i ̸= m

2 with sw(am/2) =
2n
m · γ m−2

m−2γ .
Then, the utilities for voters i who vote for am/2 are consistent as

vi(am/2) = (1− γ)
γ(m− 2)

m− 2γ
+ γ

m− 2

m− 2γ

2

m

=
γ(m− 2)

m− 2γ

(
1− γ +

2

m

)
=

γ(m− 2)

m− 2γ

m− γm+ 2

m

⩾ γ
m− γ(m− 2)

m− 2γ

m− 2

m
= vi(bj)

for all bj , where the last inequality holds because 2 ⩾ 2γ. Similarly,

vi(am/2) = (1− γ)
m− 2

m− 2γ
+ γ

m− 2

m− 2γ

2

m

=
m− 2

m− 2γ

m− γ(m− 2)

m

⩾ γ
2

m
= vi(aj)

for all aj ̸= am/2, where the last inequality holds for sufficiently large m, so am/2 is indeed the alternative of highest value.
The utilities of voters i who vote for aj ̸= am/2 is consistent as:

vi(bi) = (1− γ)
m− γ(m− 2)

m− 2γ
+ γ

m− γ(m− 2)

m− 2γ
· m− 2

m

=
m− γ(m− 2)

m− 2γ

(
1− γ + γ

m− 2

m

)
=

m− γ(m− 2)

m

= (1− γ) + γ · 2

m
= vi(aj)

for all bi. And vi(aj) ⩾ vi(ak) for all k ̸= j as sw(ak) ⩽ sw(aj) and voter i gives ak zero utility. So, aj is indeed the highest
ranking alternative.

But, the distortion we get is: ∑
i sw(bi)

sw(am/2)
=

m

2
· m− γ(m− 2)

m− 2γ
· n ·

(
2n

m
· γ m− 2

m− 2γ

)−1

=
m2

4
· m− γ(m− 2)

γ(m− 2)

=
m2

4
·
(
1

γ
· m

m− 2
− 1

)
⩾

m2

4
· 1− γ

γ
,

as claimed.



Remark 1. While not explicitly studied in Benadè et al. (2021), a deterministic distortion of Θ(m2) in the 1-approval ballot
format follows from their analysis of the ranking by value ballot format immediately, as it simply uses a plurality rule to
aggregate voter preferences.

While 1-approval ballot sounds practical, it does not yield a good distortion since the basic potential of PB (which is selecting
multiple alternatives if the budget allows) is not used. However, this is really the best we can hope for with k-approval ballots.
This motivates the consideration of knapsack ballots, which elicits the top budget-feasible subset from each voter’s perspective.

C.3 Knapsack ballots
For the ballot format knapsack (knap), the set of possible ballots Lknap = F is the set of all budget-feasible subsets of A.
Each voter i submits the subset she values most: ρi ∈ arg maxS∈F vi(S). This amounts to asking each voter to solve her own
personal knapsack problem.

Unfortunately, similar to what happens with 1-app ballots, an instance similar to the one in Proposition 2 also applies to
knapsack ballots, since voters are only permitted to approve budget-feasible allocations, which all consist of one single item.

Corollary 1 (LB, knap, Deterministic). For knapsack ballot format, every deterministic rule f has distortion

distknap(f) ⩾ mγ−1
min −m+ 1 ∈ Ω

(
m

γmin

)
.

For randomized rules, we prove a slightly weaker lower bound that is γmin times our lower bound for deterministic rules. As
γmin goes from 0 to 1, the lower bound for deterministic rules goes from unbounded to 1 while that for randomized rules goes
from m to 1. It is easy to observe that both lower bounds are tight at both extremes, but there may be room for improvement for
intermediate values of γmin. The proof is in Theorem 15.

Theorem 15 (LB, knap, Randomized). For knapsack ballot format, every randomized rules f has distortion

distknap(f) ⩾ m(1− γmin) + γmin.

Proof. Formally, consider a case where n is divisible by m, all the voters have the same PS-value of γ = γmin, and every
alternative a ∈ A has a cost of ca = 1. In this case, each vote consists of exactly one alternative. For any alternative a ∈ A,
let Na be the set of voters who vote for alternative a. Choose the input profile ρ⃗ so that n/m voters vote for each alternative so
that |Na| = n

m for all a ∈ A. Our randomized voting rule f must pick some alternative a∗ with probability at most 1/m.
Suppose that all voters in Na∗ have a utility of m(1−γ)+γ

γ for a∗ and utility zero for everything else. Moreover, voters in
Na with a ̸= a∗ have utility 1 for a and zero utility for the rest of the alternatives. We can see that the social welfare of a∗ is
m(1−γ)+γ

γ · n
m , and the social welfare of any other alternative is n

m .
First of all, we have to make sure that this utility matrix and PS-vector yield a value matrix consistent with the input profile.

For any a ̸= a∗ and i ∈ Na we have:

vi(a
∗) = γ

m(1− γ) + γ

γ
· 1

m

=
m(1− γ) + γ

m
= (1− γ) +

γ

m
= vi(a).

Furthermore, for voter i ∈ Na∗ and any a ̸= a∗ as:

vi(a
∗) = (1− γ)

m(1− γ) + γ

γ
+ γ

m(1− γ) + γ

γ
· 1

m

=

(
1− γ

m− 1

m

)
m(1− γ) + γ

γ

=
m− γ(m− 1)

m
· m(m− γ) + γ

γ

=
γ

m
· (1− γ)m+ γ

γ
· m(m− γ) + γ

γ

⩾
γ

m
= vi(a),

where the last inequality follows from the fact that γ ⩽ 1. That means the value matrix is consistent with the input profile for
all the voters.



After that, we can see the distortion that the rule incurs. We could have gotten a utility of n
m · m(1−γ)+γ

γ by choosing a∗, but
instead, we got the expected utility of the following

Ea∼f(ρ⃗,c)[sw(a)] ⩽
1

m
sw(a∗) +

m− 1

m
· n

m

=
1

m
· n

m
· m(1− γ) + γ

γ
+

m− 1

m
· n

m

= n

(
m(1− γ) + γ + (m− 1)γ

m2γ

)
=

n

γm
,

and so the distortion is at least:

distknap(f, ρ⃗, c) =
sw(a∗)

Ea∼f(ρ⃗,c)[sw(a)]

⩾
n
m · m(1−γmin)+γmin

γmin

n
γminm

= m(1− γmin) + γmin.

This lower bound is trivially tight in m. We show this by having m alternatives of cost 1 each, and n
m voters approving each

one.

Remark 2 (UB, knap, Randomized). The voting rule f which ignores all the ballots and simply picks a single alternative
uniformly at random trivially yields an upper bound of distknap(f) ⩽ m.

Finally, we present upper bounds for knapsack due to its importance in the literature. In the unit-sum model, Benadè et al.
(2021) give exponential lower bounds for the knapsack ballot format. We are able to prove that in the public-spirit model, it
is possible to break this exponential barrier, showing that the worst-case instances for knapsack in the unit-sum model rely on
potentially infeasible voter preferences. In doing so, we rely on new techniques for aggregating knapsack votes. This illustrates
how public spirit can be much more powerful than that pervasive assumption (which is hard to justify) in mitigating distortion,
especially when the number of alternatives is at all large.

Theorem 16 (UB, knap, Deterministic). For knapsack votes, there exists a deterministic rule f with distortion

distknap(f) ⩽ 4m3(γ−2
min − γ−1

min) + 3m ∈ O

(
m3

γ2
min

)
.

Proof. For any subset of alternatives S ⊆ A, let nS :=
∑

i∈N I(S ⊆ ρi) be the number of voters whose knapsack set contains
S. We use shorthand na := n{a} and na,b := n{a,b} for all a, b ∈ A. Then, informally, na,b is the number of voters who vote
for both a and b.

For an arbitrary input, define A0 := {a ∈ A : na ⩾ n
2m} and initialize A− = A0 and A+ = ∅. We will return A+ after

running the following until A− is empty:

1. Remove the alternative b with the highest cost in A− and add it to A+.
2. Remove from A− all alternatives a such that

na,b

nb
⩽

m− 1

m
.

First, we will prove that this algorithm always returns a budget-feasible subset. Suppose for the sake of contradiction that at
some point, the max-cost item in A−, call it am, is no longer within budget: i.e., cam +

∑
b∈A+ cb > 1. We will show that there

exists some b ∈ A+ such that nb,am

nb
⩽ m−1

m .
Let bm ∈ A+ be the first alternative added to A+, so that it has maximum cost. Then, for all b ∈ A+ \{bm}, because b wasn’t

pruned in step 2 directly after adding bm, it must be that nb,bm

nbm
> m−1

m . By the same reasoning, the same must be true for am

— that is, nam,bm

nbm
> m−1

m . Summing over these inequalities, we get that:

nam,bm +
∑

b∈A+\{bm}

nbm,b > nbm

[
m− 1

m
+

m− 1

m

(∣∣A+
∣∣− 1

)]
= nbm

m− 1

m

∣∣A+
∣∣ .



Notice that the left hand side is at most the number of voters who voted for bm, multiplied by the number of other alternatives
in {am}∪ |A+| they could have voted for. Since {am}∪A+ is an infeasible set, no voter could have voted for all of them. Thus,
each voter can only vote for |A+| alternatives in {am} ∪ |A+|, and so only |A+| − 1 alternatives other than bm. The left hand
side is then at most (|A+| − 1)nbm , and therefore

(
∣∣A+

∣∣− 1)nbm > nbm
m− 1

m

∣∣A+
∣∣ .

Simplifying, we can see that this is impossible, as this is equivalent to the inequality:∣∣A+
∣∣− 1 >

∣∣A+
∣∣− ∣∣A+

∣∣ /m.

We have encountered a contradiction, so our premise — that we added an a to A+ that exceeded the budget — must have been
false.

Now, we will show that if an a ∈ A− is pruned in Step 2, then sw(a)
sw(A+) ⩽ 2m2 1−γmin

γmin
+1. Indeed, because we prune it, there

exists some b ∈ A+ such that:
na,b

nb
⩽

m− 1

m
.

Since b ∈ A0, we have nb ⩾ n/2m and so nb − na,b, the number of voters that vote for b but not a, is at least n/(2m2):

nb − na,b ⩾ nb −
m− 1

m
nb ⩾

n

2m2
.

Notice that because we pick the highest cost alternative b in each iteration, any alternative pruned later by the algorithm must
have a cost lower than cb. Therefore, any time a voter votes for b but not a, they could have replaced b with a and have gotten
another feasible set. The fact that they did not means that they prefer b to a. We have at least n/(2m2) of such voters (that
prefer b to a), by Lemma 1 we can conclude that sw(a)

sw(A+) ⩽ 2m2 1−γmin

γmin
+ 1, as needed.

Extending this result, define m0 := |A0|, we get that

sw(A0)

sw(A+)
⩽ m0

(
2m2 1− γmin

γmin
+ 1

)
.

On the other hand, for alternatives outside of A0, the distortion must be small. Let A∗ be the optimal budget-feasible set of
alternatives. Then:

sw(A∗ \A0)

sw(A+)
=

sw(A∗ \A0)

sw(A0)
· sw(A0)

sw(A+)
.

It remains to bound sw(A∗\A0)
sw(A0)

. Because at most n/(2m) voters include each alternative in A \ A0 in their knapsack set, and
there are at most m −m0 such alternatives, we know that at most n(m −m0)/2m voters vote for alternatives in A \ A0, that
is at least n(m+m0)/2m voters only vote for alternatives in A0. Observing that A∗ \A0 ∈ F (since A∗ ∈ F), it must be that
for all n(m + m0)/2m voters i who vote for only alternatives in A0, vi(A0) ⩾ vi(ρi) ⩾ vi(A

∗ \ A0) for each a ∈ A \ A0.
Therefore, by Lemma 1,

sw(A∗ \A0)

sw(A0)
⩽

2m

m+m0
· 1− γmin

γmin
+ 1.

Thus,

sw(A∗)

sw(A+)
⩽

sw(A0)

sw(A+)
+

sw(A∗ \A0)

sw(A+)
=

sw(A0)

sw(A+)
+

sw(A∗ \A0)

sw(A0)
· sw(A0)

sw(A+)

⩽
sw(A0)

sw(A+)

(
1 +

m

m0
· 1− γmin

γmin
+ 1

)
⩽ m0

(
2m2 1− γmin

γmin
+ 1

)(
m

m0
· 1− γmin

γmin
+ 2

)
⩽ 2m3

(
1− γmin

γmin

)2

+ 4m3 1− γmin

γmin
+m

1− γmin

γmin
+ 2m

⩽ 4m3
(
γ−2
min − γ−1

min

)
+ 3m.

It’s possible that for general Knapsack voting, this cannot be improved to match the lower bound that is achieved in the case
that reduces to plurality voting. This is because in the general case where people can approve more than 1 alternative, although
we have budget-feasible information, we don’t know what people’s favorite element is in their approval set if it is greater than
size 1.



Knapsack for Committee Selection We can improve the analysis of the knapsack voting when all alternatives have the same
cost.

Theorem 17. We can get a distortion of 1+m
2 + 1−γmin

γmin
m2 in the deterministic knapsack setting for m/2-multiwinner elections

(or equivalently when ca = 2
m for all a ∈ A).

Proof. Recall the notation used in the proof of Theorem 16. For any subset of alternatives S ⊆ A, let nS :=
∑

i∈N I(S ⊆ ρi)
be the number of voters whose knapsack set contains S. We use shorthand na := n{a} and na,b := n{a,b} for all a, b ∈ A.
Then, informally, na,b is the number of voters who vote for both a and b.

The voting rule we will use is as follows: assign a plurality score to each alternative, where the score is simply the number
of times each alternative appears.

Pick the m/2 alternatives with the largest plurality score, A. Indeed, every alternative can appear at most n times, as every
voter can vote for them only once. Therefore, in the worst case, if the top m/2 − 1 alternatives appear n times there must
remain nm/2 − n(m/2 − 1) = n appearances of other alternatives. By the pigeonhole principle from here, the remaining
plurality winner must be chosen n/(m/2 + 1) > n/m times. Thus, the minimum number of times a plurality winner can
appear is n/m.

Moreover, because na > nb for all a ∈ A and b /∈ A, and
∑

a∈A na +
∑

b/∈A nb = mn/2, we get that 2
∑

a∈A na ⩾ mn/2
and so

∑
a∈A na ⩾ mn/4.

Then, let A∗ be the optimal set of alternatives. Note then that:

sw(A∗, U)

sw(A,U)
=

∑
a∗∈A∗ sw(a∗, U)∑
a∈A sw(a, U)

=

∑
a∗∈A∗∩A sw(a∗, U)∑

a∈A sw(a, U)
+

∑
a∗∈A∗\A sw(a∗, U)∑

a∈A sw(a, U)

⩽ 1 +
∑

a∗∈A∗\A

sw(a∗, U)∑
a∈A sw(a, U)

. (3)

We will show that for all a∗ ∈ A∗ \A, there exists some a ∈ A such that:

sw(a∗)

sw(a)
⩽ 2

1− γmin

γmin
m+ 1,

by considering two cases:

1. Suppose that for all a∗ ∈ A∗ \ A, there exists some a ∈ A such that na,a∗/na ⩽ 1/2. Then, na − na,a∗ ⩾ na/2 ⩾ n/2m.
Therefore, by Lemma 1:

sw(a∗)

sw(a)
⩽ 2

1− γmin

γmin
m+ 1.

2. Suppose that for some a∗ ∈ A∗ \ A, and for all a ∈ A, na,a∗/na > 1/2. Let amax = arg maxa∈A na and amin =
arg mina∈A na. Then, in particular,

namax < 2namax,a∗ ⩽ 2na∗ ⩽ 2namin ,

where the last equality holds because amin is a plurality winner, and a∗ isn’t
Since (m/2)namax ⩾

∑
a∈A na ⩾ nm/4, namax ⩾ n/2 and so namin ⩾ n/4. Therefore, we can improve the lower bound for

plurality winners: for all a ∈ A, na ⩾ n/4.

By Lemma 7 below, we know that for all a∗ ∈ A∗\A, there exists some a ∈ A such that na,a∗/na ⩽ (m−2)/m. Therefore,
na − na,a∗ ⩾ 2na/m ⩾ n/2m. Thus, by Lemma 1 in (Flanigan, Procaccia, and Wang 2023):

sw(a∗)

sw(a)
⩽ 2

1− γmin

γmin
m+ 1.



From here we can prove an m2 bound easily by taking a∗max = argmaxa∗∈A∗sw(a∗, U). Then, continuing off of (3), and
using the fact that there exists some â ∈ A such that sw(a∗

max,U)
sw(â,U) ⩽ 2 1−γmin

γmin
m+ 1:

sw(A∗, U)

sw(A,U)
⩽ 1 +

m

2
· sw(a∗max, U)∑

a∈A sw(a, U)

⩽ 1 +
m

2
· sw(a∗max, U)

sw(â, U)

⩽ 1 +
1− γmin

γmin
m2 +

m

2
,

as claimed!

Lemma 7. When A∗ is the optimal subset and A is the subset chosen by the repeated plurality rule, for all a∗ ∈ A∗ \A, there
exists some a ∈ A such that:

N(a, a∗)

N(a)
⩽ (m− 2)/m.

Proof. Note that
∑

a∈A N(a, a∗) is the number of times a voter votes for some alternative and a∗. Each voter can vote for at
most m/2 alternatives. Since there are then at most m/2− 1 alternatives in A that any voter who votes for a∗ could have voted
for: ∑

a∈A

N(a, a∗) ⩽ N(a∗)(m/2− 1) ⩽ N(a∗) · m− 2

2
.

From here, let amin = argmina∈AN(a, a∗). Then, substituting this into the inequality above, and using that |A| = m
2 :

m

2
N(amin, a

∗) ⩽ N(a∗) · m− 2

2
.

Since N(a∗) ⩽ N(amin) as a∗ is not in A and therefore must occur at most as many times as any plurality winner,

m

2
N(amin, a

∗) ⩽ N(amin) ·
m− 2

2
,

and so finally
N(amin, a

∗)

N(amin)
⩽

m− 2

m
,

as desired!

C.4 Threshold Approval Votes
Finally, we investigate the distortion under the ballot format of threshold approval votes. Under this ballot format with threshold
τ > 0 (τ -th), each voter i reports the subset of alternatives for which her PS-value is at least a τ fraction of her total PS-value
for all alternatives in A, i.e., ρi = {a ∈ A : vi(a) ⩾ τ ·

∑
b∈A vi(b)}. Thus, Lτ -th = 2A, as with knapsack votes. Benadè et al.

(2021) introduce this ballot format for unit-sum utilities and our definition extends it to arbitrary utilities.6

It is easy to see that without a unit sum assumption, the distortion of any deterministic rule is unbounded, even with public-
spirited voters.

Proposition 3. The distortion associated with deterministic fixed thresholds (using the same definition as in (Benadè et al.
2021)) is unbounded for any choice of threshold.

Proof. Suppose we use a threshold of t. Then, consider an input profile where no voter approves any alternative. Suppose that
f picks a∗ ∈ A. Then, consider a preference profile where ui(a

∗) = 0 and ui(b) = t/2 for all i ∈ N and all b ̸= a∗.
Then, vi(a∗) = (1− γi) · 0 + γi · 0

n = 0 < t and vi(b) = (1− γi) · t/2 + γi · nt/2
n = t/2 < t, meaning the utility profile is

consistent with the input, but the distortion is infinite.

6One could also conceive of using an absolute threshold (i.e., voter i asked to approve all a with vi(a) ⩾ τ ), instead of making it relative
to the total value. But in Proposition 3, we show that this leads to the worst possible distortion: unbounded for deterministic rules and m for
randomized rules.



Deterministic Rules By setting τ = 1/m, we can achieve the following distortion upper bound.

Theorem 18 (upper bound). For threshold approval votes with threshold τ = 1/m, there exists a deterministic rule f with
distortion

dist(1/m)-th(f) ⩽ m
(
mγ−1

min −m+ 1
)
.

Proof. We can use the voting rule that simply picks the plurality winner: the alternative with most approvals. Let a be the
plurality winner.

Let S∗ be the optimal feasible subset of alternatives. Then, if voter i approves alternative a:

vi(a)∑
b∈A vi(b)

⩾ 1/m,

and so:
mvi(a) ⩾ vi(A).

Notice that every voter must approve at least one alternative, as at least one alternative must have value at least the average:∑
a∈A vi(a)

m . Therefore, by the pigeonhole principle, the plurality winner must appear at least n/m times, and so mvi(a) ⩾ vi(A)
for at least n/m voters i.

By Lemma 1,
sw(A)

sw(a)
⩽ m

(
1− γmin

γmin
m+ 1

)
.

as claimed.

As with rankings by value, it turns out that linear distortion is unavoidable, even when voters exhibit perfect public spirit and
submit the same vote.

Theorem 19 (lower bound). For all deterministic f and all threshold values τ > 0,

distτ -th(f) ⩾ m− 1.

Proof. Let t > 0 be the threshold.
Consider the case where alternative a costs 1, and alternatives b1, . . . , bm−1 cost 1

m−1 .
Suppose all voters approve only a. Then, we have two cases. If the voting rule f doesn’t pick alternative a, then we incur

infinite distortion when the utility of a is 1, and the utility of b1, . . . , bm−1 is 0 for all voters.
If f does pick a, then it cannot pick anything else as the budget is exhausted. Let the utility of a be t+ ϵ and the utility of bj

be t− ϵ for all voters, and any small ϵ > 0.
Then, we could have gotten a utility of (m− 1) (t− ϵ), but instead get t+ ϵ. As ϵ → 0, the distortion goes to m− 1.

Randomized Rules Turning to randomized rules for threshold approval votes with threshold τ , we get the same results under
public-spirited behavior with arbitrary utilities as Benadè et al. (2021) get under the unit-sum assumption.

Theorem 20 (lower bound). For threshold approval votes with any threshold τ > 0, every randomized rule f has distortion

distτ -th(f) ⩾
1

2

(⌊√
m

2

⌋
+ 1

)
.

Proof. We are borrowing the construction from Theorem 3.4 in Benadè et al. (2021). Consider the case where each alternative
has cost 1. We consider two cases. First suppose that τ ⩽ 1/ ⌊

√
m⌋. Fix a set S of ⌊

√
m/2⌋ + 1 alternatives. Construct the

input profile ρ⃗ where ρi = S for all i ∈ N . There must exist a∗ ∈ S where Pr[a∗] ⩽ 1/|S|. Consider the utility matrix U
where for all i ∈ N , ui(a

∗) = 1/2 and for a ∈ S \ {a∗}, ui(a) = 2/ ⌊
√
m/2⌋ and ui(a) = 0 for a ∈ A \ S. Note that since

voters have identical utilities, we have ui(a) = vi(a) for any alternative a ∈ A. We have sw(a∗) = n/2 and for a ∈ A \ {a∗},
sw(a) ⩽ n/

√
m. That gives us

distτ -th(f) ⩾
sw(a∗)

Ea∼f(ρ⃗,c)[sw(a)]

⩾
n
2

1

⌊√m/2⌋+1

n
2 +

⌊√m/2⌋
⌊√m/2⌋+1

n√
m

⩾ 1

⌊√m/2⌋+1
+ 1

⌊√m/2⌋+1

⩾
1

2

(⌊√
m

2

⌋
+ 1

)
.



On the other hand if τ > 1/ ⌊
√
m⌋, construct the input profile ρ⃗ where ρi = ∅ for i ∈ N . In this case there exists a∗ ∈ A

where Pr[a∗] ⩽ 1/m. Consider the utility matrix U where for every voter ui(a
∗) = 1/ ⌊

√
m⌋ and for a ∈ A \ {a∗},

ui(a) = (1 − 1/ ⌊
√
m⌋)/(m − 1). We have sw(a∗) = n/ ⌊

√
m⌋, and sw(a) = n(1 − 1/ ⌊

√
m⌋)/(m − 1) for a ∈ A \ {a∗}.

That gives us:

distτ -th(f) ⩾
sw(a∗)

Ea∼f(ρ⃗,c)[sw(a)]

⩾

n

⌊√m⌋

1
m

n

⌊√m⌋ + m−1
m

n

(
1− 1

⌊√m⌋

)
m−1

⩾
m

⌊
√
m⌋

⩾
⌊√

m
⌋
,

which gives us the desired bound.

Benadè et al. (2021) consider an additional source of randomness, whereby the designer samples a threshold τ from a
distribution R over support [0, 1], and then all voters are asked to submit their threshold approval votes using this value of
τ (same for all voters). We refer to this ballot format as randomized threshold approval votes with threshold distribution D
(D-rth). Note that LD-rth = Lτ -th = 2A. Since randomness is already introduced, it makes sense to also allow the aggregation
rule f to be randomized in this case. When defining the distortion of a randomized rule f , we take expectation over the sampling
of threshold τ (before taking any worst case).
Theorem 21 (lower bound). For randomized threshold approval votes with the threshold sampled from any distribution D,
every randomized rule f has distortion

distD-rth(f) ⩾
1

2

⌈
log2(m)

log2(2 ⌈log2(m)⌉)

⌉
.

Proof. We are borrowing the construction directly from Theorem 3.6 in Benadè et al. (2021). Consider the case where ca = 1
for all a ∈ A, and let f be an arbitrary rule that both returns a threshold and a set of alternatives randomly.

Split up the (1/m, 1] interval into ⌈log2(m)/ log2(2 log2(m))⌉ parts Ij defined such that

Ij =

(
(2 log2(m))j−1

m
,min

{
(2 log2(m))j

m
, 1

}]
.

Define uj and ℓj to be the largest and smallest points in Ij respectively. By construction, uj ⩽ 2 log2(m)ℓj for all j.
The key idea is to give utilities to alternatives within the interval that the threshold with least probability is contained in, so

that with high probability, the alternatives are either all approved or all disapproved.
Indeed, let k be a value such that

Pr(t ∈ Ik) ⩽ ⌈log2(m)/ log2(2 log2(m))⌉−1
,

which must exist by the pigeonhole principle.
Fix a subset S ⊆ A of size ⌈log2(m)⌉, and let V = uk/2 + (⌈log2(m)⌉ − 1)ℓk.
We will give each voter the same utilities, so that u(a) := ui(a) = vi(a) for all i ∈ N, a ∈ A. For all a ∈ S, assign utilities

so that
∑

a∈S u(a) = V , for all a /∈ S, let u(a) = (1− V )/(m− ⌈log2(m)⌉).
We can verify that ℓk ⩽ 1

2 log2(m)uk for all k. We can then see that the utilities sum to one, and are all positive as:

V =
uk

2
+ (⌈log2(m)⌉ − 1)ℓk ⩽

1

2
+

⌈log2(m)⌉ − 1

2 log2(m)
⩽ 1.

We construct this so that all alternatives in S have utilities contained in Ik. Thus, when t /∈ Ik, all voters either approve S or
disapprove S. Therefore, there must exist some a∗ ∈ S such that

Pr(a∗is returned | t /∈ Ik) ⩽ 1/ ⌈log2(m)⌉ .
Now, we can assign u(a∗) = uk/2 and u(a) = ℓk for a ∈ S \ {a∗}. Then, the optimal choice is a∗ with social welfare

nuk/2, but instead, since ℓk > (1− V )/(m− log2(m)), we pick with high probability an alternative with at most nℓk utility.
Indeed, the expected social welfare of f is:

Pr(t ∈ Ik) ·
nuk

2
+ Pr(t /∈ Ik)

(
1

⌈log2(m)⌉
· nuk

2
+

⌈log2(m)⌉ − 1

⌈log2(m)⌉
· nℓk

)
⩽

(
⌈log2(m)/ log2(2 log2(m))⌉−1

+
1

⌈log2(m)⌉
+

⌈log2(m)⌉ − 1

⌈log2(m)⌉
· 1

log2(m)

)
nuk

2

⩽
(
⌈log2(m)/ log2(2 log2(m))⌉−1

)
nuk.



The maximum social welfare that we can get is nuk/2, so the distortion is:

distD-rth(f) ⩾
nuk

2

nuk

⌈
log2(m)

log2(2 log2(m))

⌉−1 =
1

2

⌈
log2(m)

log2(2 ⌈log2(m)⌉)

⌉
.

Theorems 20 and 21 are corollaries of Theorems 3.4 and 3.6 of Benadè et al. (2021), respectively. Their lower bound, derived
under the unit-sum assumption, carries over to our more general setup. While they do not allow public-spirited behavior, in their
construction the utility of each alternative is the same across all voters, ensuring that any level of public-spirited behavior does
not affect their construction. The only reason we provide full proofs is that Benadè et al. (2021) derive only an asymptotic lower
bound by making several simplifying assumptions, which we carefully remove to derive an exact lower bound.

D Missing Details from Section 5
D.1 Proof of Theorem 9
Theorem 9. distrank-b(HLB)(Copeland) = O(

√
m/γ2

min).

Proof. Let A∗ be an optimal budget-feasible set of alternatives. Clearly, sw(A∗) = sw(L ∩A∗) + sw(H ∩A∗), implying that
at least one of sw(L ∩A∗) ⩾ 1

2sw(A∗) and sw(H ∩A∗) ⩾ 1
2sw(A∗) must be true. In both cases, we claim that there exists a

bundle P ∗ ∈ P for which sw(P ∗) ⩾ sw(A∗)

2⌈√m⌉ .

Suppose sw(L ∩ A∗) ⩾ 1
2sw(A∗). Since L is partitioned into at most ⌈

√
m⌉ bundles in P , there exists P ∗ ∈ P such that

sw(P ∗) ⩾ sw(L)

⌈√m⌉ ⩾ sw(L∩A∗)

⌈√m⌉ ⩾ sw(A∗)

2⌈√m⌉ .

Next, suppose sw(H ∩A∗) ⩾ 1
2sw(A∗). Since each alternative in H ∩A∗ has cost more than 1

⌈√m⌉ and lies in the budget-

feasible set A∗, we have that |H ∩ A∗| ⩽ ⌈
√
m⌉. Thus, there exists an alternative a∗ ∈ H ∩ A∗ with sw(a∗) ⩾ sw(H∩A∗)

⌈√m⌉ ⩾

sw(A∗)

2⌈√m⌉ . Hence, for the bundle P ∗ ∈ P containing a∗, we have sw(P ∗) ⩾ sw(A∗)

2⌈√m⌉ .

Finally, if Copeland applied to the rank-b(HLB) ballots picks bundle P , using its distortion bound, we have

sw(P ) ⩾ γ2
min · sw(P ∗) ⩾ γ2

min · sw(A∗)

2 ⌈
√
m⌉

,

yielding distortion at most
2⌈√m⌉
γ2
min

= O(
√
m/γ2

min), as needed.

D.2 Proof of Theorem 10
Theorem 10.

distrank→rank-b(TCB)(Copeland) = O(log(m)/γ4
min).

Proof. Let A∗ be an optimal budget-feasible set of the alternatives. Choose ℓ ∈ {0, 1, . . . , L} with the highest sw(A∗ ∩ Tℓ);
note that, by the pigeonhole principle, sw(A∗ ∩ Tℓ) ⩾

sw(A∗)
1+L .

Let P ∗
ℓ be the optimal tℓ-sized subset of Tℓ; note that this is feasible due to the definition of tℓ. Further, since A∗ ∩ Tℓ is

feasible, we have |A∗ ∩ Tℓ| ⩽ 2tℓ. Hence, A∗ ∩ Tℓ can be partitioned into two tℓ-sized subsets of Tℓ, the better of which must
be a 2-approximation of A∗ ∩ Tℓ. Since P ∗

ℓ is the best tℓ-sized subset of Tℓ, we have sw(P ∗
ℓ ) ⩾

1
2sw(A∗ ∩ Tℓ).

Next, because we pick Pℓ ⊆ Tℓ of size tℓ using the iterated Copeland rule, given its distortion bound of (2γ−1
min − 1)2 from

Lemma 4, and the the distortion of Copeland given in Theorem 3.3 of Flanigan, Procaccia, and Wang (2023), we have

sw(Pℓ) ⩾
sw(P ∗

ℓ )

(2γ−1
min − 1)2

⩾
sw(A∗ ∩ Tℓ)

2 · (2γ−1
min − 1)2

⩾
sw(A∗)

2 · (1 + L) · (2γ−1
min − 1)2

.

Finally, since we pick a bundle P ∈ P using Copeland’s rule, using its distortion bound again, we have

sw(P ) ⩾
sw(Pℓ)

(2γ−1
min − 1)2

⩾
sw(A∗)

2 · (1 + L) · (2γ−1
min − 1)4

,

yielding a distortion of at most 2 · (1 + L) · (2γ−1
min − 1)4 = O(logm/γ4

min).



D.3 Proof of Theorem 11
Theorem 11. distrank→rank-b(EB)(Copeland) = O(1/γ4

min).

Proof. Let A∗ be an optimal budget-feasible set of the alternatives. Let U∗ = ∪ℓ∈{0,1,...,L}:|A∗∩Tℓ|=1(A
∗ ∩ Tℓ) be the set of

alternatives in A∗ such that there is no other alternative in A∗ from their tier. First, we show that there exists a bundle P ∗ ∈ P
such that sw(P ∗) ⩾ 1

9γ2
min

· sw(A∗). We do so by splitting into two cases:

Case 1: sw(U∗) < 1
3

sw(A∗). Here, we seek a bundle in P that provides a good approximation to B∗ = A∗ \ U∗ because
sw(B∗) ⩾ 2

3sw(A∗). We consider two sub-cases:

Case 1a: sw(B∗ ∩ T0) ⩾ 2
9

sw(A∗). In this case, consider P0,r for the greatest feasible r, and note that r ⩾ |T0|/2. The
best r-sized subset of T0 is 1/2-approximation of T0, so, by the distortion of iterated Copeland,

sw(P0,r) ⩾
sw(T0)

2 · (2γ−1
min − 1)2

⩾
sw(B∗ ∩ T0)

2 · (2γ−1
min − 1)2

⩾
sw(A∗)

9 · (2γ−1
min − 1)2

.

Case 1b: sw(B∗ ∩ T0) < 2
9

sw(A∗). Hence, sw(B∗ ∩ ∪ℓ∈[L]Tℓ) = sw(B∗)− sw(B∗ ∩ T0) ⩾ 4
9sw(A∗). Define t0 = 0,

and for each ℓ ∈ [L], define

tℓ =

{
0, if |A∗ ∩ Tℓ| = 1,

2⌊log2 |A∗∩Tℓ|⌋−1, if |A∗ ∩ Tℓ| ⩾ 2.

First, note that t⃗ is a valid sequence. Next, we prove that Pt⃗ = ∪L
ℓ=0Pℓ,tℓ is feasible. Note that t0 = 0, so P0,t0 = ∅. For each

ℓ ∈ [L], |Pℓ,tℓ | = tℓ ⩽ |A∗∩Tℓ|
2 . Since alternatives in Tℓ differ from each other in cost by a factor of at most 2, this implies

c(Pℓ,tℓ) ⩽ c(A∗ ∩ Tℓ). Hence, c(Pt⃗) ⩽
∑T

ℓ=1 c(A
∗ ∩ Tℓ) ⩽ c(A∗) ⩽ 1; hence, Pt⃗ ∈ P .

Finally, for each ℓ ∈ [L] such that |A∗ ∩ Tℓ| ⩾ 2, note that tℓ ⩾ 1
4 |A

∗ ∩ Tℓ|; hence, the best tℓ-sized subset of Tℓ is a
(1/4)-approximation of A∗ ∩ Tℓ, and applying the distortion guarantee of iterated Copeland, we have

sw(Pℓ,tℓ) ⩾
sw(A∗ ∩ Tℓ)

4 · (2γ−1
min − 1)2

.

Summing over ℓ ∈ [L] such that |A∗ ∩ Tℓ| ⩾ 2, we have

sw(Pt⃗) ⩾
sw(B∗ ∩ ∪ℓ∈[L]Tℓ)

4 · (2γ−1
min − 1)2

⩾
sw(A∗)

9 · (2γ−1
min − 1)2

.

Case 2: sw(U∗) ⩾ 1
3

sw(A∗). In this case, we seek a bundle in P that provides a good approximation of U∗. To do this,
we consider three bundles, and prove that at least one of which must be a sufficiently good approximation.

Case 2a: sw(U∗∩TL) ⩾ 1
3

sw(U∗). Then, since |U∗∩TL| = 1, we can take PL,1, which also has size |PL,1| = 1. Further,
by the distortion guarantee of iterated Copeland, we have

sw(PL,1) ⩾
sw(U∗ ∩ TL)

(2γ−1
min − 1)2

⩾
sw(A∗)

9 · (2γ−1
min − 1)2

.

Case 2b: sw(U∗ ∩ TL−1) ⩾ 1
3

sw(U∗). Similarly, since |U∗ ∩ TL−1| = 1, we can take PL−1,1, netting

sw(PL−1,1) ⩾
sw(U∗ ∩ TL−1)

(2γ−1
min − 1)2

⩾
sw(A∗)

9 · (2γ−1
min − 1)2

.

Case 2c: sw(U∗ \ (TL ∪ TL−1)) ⩾ 2
3

sw(U∗). Hence, sw(U∗ ∩ (∪L−2
ℓ=0 Tℓ)) ⩾ 1

3sw(U∗). Take t⃗ where tℓ = 1 for each

ℓ ∈ {0, 1, . . . , L − 2} and tL = 0. Note that this is a valid sequence. Further, c(Pt⃗) ⩽
∑L−2

ℓ=0
2ℓ

m = 2L−1−1
m ⩽ 1. By the

distortion of iterated Copeland, we have

sw(Pt⃗) ⩾
sw(U∗ ∩ ∪L−1

ℓ=0 Tℓ)

(2γ−1
min − 1)2

⩾
sw(A∗)

9 · (2γ−1
min − 1)2

.

Finally, applying the distortion bound of the final Copeland aggregation, the bundle P picked must satisfy

sw(P ) ⩾
sw(P ∗)

(2γ−1
min − 1)2

⩾
sw(A∗)

9 · (2γ−1
min − 1)4

,

which implies a distortion of O(1/γ4
min), as desired.



E Distortion with Unrestricted Utilities and No Public Spirit
In this section, we consider the distortion that can be achieved under various ballot formats without an assumption of public-
spirited voters, or equivalently, when γi = 0 for every voter i ∈ N . This serves as a benchmark and motivates the need for
cultivating public spirit among voters. It is also interesting to note that without any public spirit, the information in the ballots
is useless as rules that ignore the ballots altogether turn out to be worst-case optimal. In contrast, the worst-case optimal rules
in the presence of even a little bit of public spirit are both qualitatively and quantitatively fairer.
Proposition 4. For any ballot format X ∈ {rank, vfm, knap, τ -th, D-rth} (with any threshold τ and threshold distribution D),
every deterministic rule has unbounded distortion when γi = 0 for all i ∈ N .

Proof. First, consider the ballot formats other than randomized threshold approval votes. For deterministic threshold approval
votes, pick any threshold τ ∈ [0, 1]. Let n be even.

Consider an instance as follows. The cost of each alternative is 1, i.e., c(a) = 1 for each a ∈ A. Pick any two alternatives
a1, a2 ∈ A, and let the input profile be as follows. Partition the voters into two equal-sized groups N1, N2.

• Under X ∈ {rank, vfm}, each voter in N1 ranks a1 at the top, a2 next, and the remaining alternatives afterwards (arbitrarily);
and each voter in N2 ranks a2 at the top, a1 next, and the remaining alternatives afterwards (arbitrarily).

• Under X ∈ {knap, τ -th} (where τ ̸= 0), each voter in N1 submits {a1} and each voter in N2 submits {a2}.
• Under X = τ -th with τ = 0, every voter approves all the alternatives.

Fix any of the above ballot formats X and consider any deterministic rule fX. Suppose it picks alternative a. Note that at
least one of a1 and a2 is not picked by fX. Due to the symmetry, assume without loss of generality that it is a1. Then, for an
arbitrarily chosen ϵ ∈ (0, 1), consider the following consistent utility matrix U .

• Each voter in N1 has utility 1 for a1 and 0 for all other alternatives.
• Each voter in N2 has utility ϵ for a2 and 0 for all other alternatives.

Then, the distortion of fX is at least
sw(a1, U)

sw(a, U)
=

n/2

ϵ · n/2
=

1

ϵ
.

Because ϵ ∈ (0, 1) was chosen arbitrarily, we can take the worst case by letting ϵ → 0, which establishes unbounded distortion.
For randomized threshold approval votes with any threshold distribution D, we cannot fix the input profile upfront as it

depends on the threshold τ sampled from D. However, we can assume that for each τ the rule sees the profile described above
for τ -th. The proof continues to work because the consistent utility matrix U described above is independent of the value of τ
(and hence, can be set upfront without knowing the value of τ ).

Proposition 5. For any ballot format X ∈ {rank, vfm, knap, τ -th, D-rth} (with any threshold τ and threshold distribution D),
every randomized rule has distortion at least m when γi = 0 for all i ∈ N and this is tight.

Proof. For the upper bound under all ballot formats, it suffices to show that the trivial randomized rule f , which does not take
any ballots as input and simply returns a single alternative chosen uniformly at random, achieves distortion at most m. Fix any
instance U and let A∗ be an optimal budget-feasible set of alternatives. Then, the expected social welfare under f is

1

m

∑
a∈A

sw(a, U) ⩾
1

m
sw(A∗, U),

which implies the desired upper bound of m on the distortion of f .
For the lower bound, we simply extend the argument from the proof of Proposition 4. Define an instance with m alternatives

a1, a2, . . . , am, all with cost 1 (i.e., c(aj) = 1 for all j ∈ [m]). Fix any randomized rule fX for each ballot X in the statement of
the proposition.

Let us first consider ballot formats other than randomized threshold approval votes. Consider the following symmetric profiles
for each ballot format. Suppose n divides m and voters are partitioned into m equal-size groups N1, . . . , Nm. Then:

• for X ∈ {rank, vfm}, for each j ∈ [m], every voter in Nj submits the ranking aj ≻ aj+1 ≻ · · · ≻ am ≻ a1 ≻ · · · ≻ aj−1,
and

• for X = {knap, τ -th} (for any τ ), for each j ∈ [m], every voter in Nj submits the set of alternatives {aj}.

For τ -threshold approval votes, there is an edge case where this profile may not be feasible with τ = 0, in which case we can
set the profile to have every voter approving all alternatives. The utility matrix defined below would still remain consistent in
this case.

For each ballot format X, the corresponding rule must pick at least one alternative with probability pX ⩽ 1/m. Due to the
symmetry, we can assume without loss of generality that this alternative is a1.

Fix any ϵ ∈ (0, 1). We define a consistent utility matrix U that works for all of the above ballot formats:



• Every voter in N1 has utility 1 for a1 and 0 for all other alternatives.
• For each j ∈ {2, . . . ,m}, every voter in Nj has utility ϵ for aj and 0 for all other alternatives.

Finally, notice that the maximum possible social welfare is sw(a1, U) = 1, whereas the expected social welfare under the
rule fX is pX · 1 + (1 − pX) · ϵ ⩽ 1/m + (1 − 1/m) · ϵ. Thus, the distortion of fX is at least 1

1/m+(1−1/m)·ϵ . Since ϵ ∈ (0, 1)

was chosen arbitrarily, we can take the worst case by letting ϵ → 0, in which case we get that the distortion must be at least m.
For randomized threshold approval votes with threshold distribution D, we cannot fix the input profile as the input profile

depends on the threshold τ sampled from D. However, we can assume that the rule sees the generic input profile described
above (where each voter approves only her most favorite alternative) for any τ ̸= 0 and the edge-case input profile (where every
voter approves all the alternatives). Due to the symmetry, the rest of the argument goes through as the final utility matrix U
constructed above is consistent with these input profiles for all τ .

F Predefined Bundles under Unit-sum Utilities
Ranking predefined bundles is a generalization of ranking by value. When all alternatives have cost equal to the budget, Theo-
rem 11 simply returns the Copeland winner. In the unit-sum model, Copeland must incur Ω(m) distortion, and so this rule must
incur Ω(m) distortion for unit-sum utilities in the worst case.

In general, we can induce a predefined bundles rule from any single winner voting rule. If the distortion is d in the single
winner case, our Theorem 11 gives at least d distortion for participatory budgeting. Because all ordinal single winner voting
rules must incur Ω(m) distortion, this forces our ballot format to incur Ω(m) distortion in the unit-sum case, regardless of the
single winner rule it is based on.

G The Robustness of Each Voting Rule
In this section, we justify that all upper bounds are robust to variations in the public spirit of voters. All of this stems from the
robust Lemma 5.

The notion of robustness we rely on is as follows.
Definition 3. Let c ∈ [0, 1]. An instance is (γmin, c)-robust when there exists a subset of N ′ of N such that |N ′| = c · |N |, all
voters i /∈ N ′ have large public spirit with γi ⩾ γmin and all voters i ∈ N ′ have small public spirit with γi < γmin.

Under this notion of robustness, the rule we rely on in proving every upper bounds, Copeland, has the following guarantee
proven in Corollary 5.3 of Flanigan, Procaccia, and Wang (2023).
Proposition 6. (Flanigan, Procaccia, and Wang 2023) For (γmin, c)-robust instances with c < 1/2,

distsingle-win
rank (Copeland) =

(
2γ−1

min − (1 + 2c)

1− 2c

)2

∈ O
(
(1− 2c)−2γ−2

min

)
.

As a direct corollary of this, iterated Copeland has the same distortion bound, and so committee selection done by repeatedly
applying a single winner voting rule is similarly robust.

We need the majority of voters to have a sufficiently large public spirit value, more than 50%, for Copeland to be robust.
Predefined bundle rules only rely on the combinatorial structure of the partitioning, which doesn’t depend on public spirit

values, and on comparisons between bundles, which Lemma 5 shows can be done robustly.
This allows us to rerun the proofs in Section 5, replacing the iterated Copeland bound with its robust formulation. For

(γmin, c)-robust instances with c < 1/2, we then get the following bounds:
• For high-low bundling, modifying Theorem 9 appropriately, we get that distrank-b(HLB)(Copeland) =
O(

√
m/((1−2c)γmin)

2),
• For tiered-cost bundling, modifying Theorem 10 appropriately, we get that distrank→rank-b(TCB)(Copeland) =
O(log(m)/((1−2c)γmin)

4),
• For exhaustive bundling, modifying Theorem 11 appropriately, we get that distrank→rank-b(EB)(Copeland) =
O(1/((1−2c)γmin)

4).
When a constant proportion – larger than half – of the voters have sufficiently large public spirit, the asymptotic behavior of

the distortion doesn’t change. We can prove similar robustness bounds for each of the other ballot formats, though they may be
less robust to large numbers of voters with low public spirit.

For ease of exposition, we first show a Corollary of Lemma 5 that allows any subset of voters to have zero utility.
Corollary 2. Let A1, A2 ⊆ A be any two subsets of alternatives. Fix any α ⩾ 0 and define NA1≻A2

= {i ∈ N : α · vi(A1) ⩾
vi(A2)}. For any constant c < |NA1≻A2 |/n, fix an arbitrary subset of voters N ′ ⊆ N of size |N ′| ⩽ cn. Suppose that for all
voters i ∈ N ′ public spirit is small with γi < γmin, and for all voters i ∈ NA1≻A2

\N ′ public spirit is large with γi ⩾ γmin.
Then:

sw(A2)

sw(A1)
⩽ α ·

(
1− γmin

γmin

n

|NA1≻A2 | − cn
+ 1

)
.



Proof. Let N ′
A1≻A2

= NA1≻A2 ∩N ′ be the set of voters in NA1≻A2 with low public spirit. Necessarily,
∣∣N ′

A1≻A2

∣∣ ⩽ |N ′| ⩽
cn < |NA1≻A2

|. Define c′ = |N ′
A1≻A2

|/|NA1≻A2 | < 1. By Lemma 5,

sw(A2)

sw(A1)
⩽ α ·

(
1− γmin

γmin

n

|NA1≻A2 | (1− c′)
+ 1

)
⩽ α ·

(
1− γmin

γmin

n

|NA1≻A2
| (1− |N ′

A1≻A2
|/|NA1≻A2 |)

+ 1

)

⩽ α ·

(
1− γmin

γmin

n

|NA1≻A2 | (1− |N ′|/|NA1≻A2 |)
+ 1

)

⩽ α ·
(
1− γmin

γmin

n

|NA1≻A2 | − cn
+ 1

)
,

as desired.

As Corollary 2 shows, the number of voters that need to prefer one alternative over another in a voting rule, NA1≻A2 ,
determines how robust it is to voters with low PS. As long as a constant proportion of the voters determining any decision we
make have sufficient public spirit, the distortion bounds will continue to hold.

For (γmin, c)-robust instances, we get the following bounds.

• For deterministic ranking by value, the Copeland rule is used, so by Proposition 6, distrank(Copeland) ∈
O (m/((1−2c)γmin)

2) when c < 1/2.
• For stochastic ranking by value, we first must bound the robust distortion of the maximal lottery rule. Here, the com-

parisons made require n/2 voters to prefer one alternative over another, so we get O (1/((1− 2c)γmin)) distortion when
c < 1/2.
By the reduction from single winner rules to randomized participatory budgeting rules in Lemma 3 and Lemma 4, we get
the robust distortion bound of distrank(Maximal Lottery) ∈ O (log(m)/(1−2c)γmin) when c < 1/2.

• For stochastic ranking by value per money By the exact same argument, modifying Theorem 13, it follows that we get a
robust upper bound of distvfm(f) ⩽ O (log(m)/(1−2c)γmin) when c < 1/2.

• For one-approvals, in Proposition 1, a plurality rule is used: an alternative is chosen when at least 1/m voters prefer one
alternative over another. This gives us a robust upper bound of dist1-app(f) ∈ O

(
m2

(1−cm)γmin

)
when c < 1/m.

• For threshold approvals, in Theorem 18, plurality is used, netting a robust upper bound of dist(1/m)-th(f) ∈
O
(

m2

(1−cm)γmin

)
when c < 1/m.

• For knapsack, in Theorem 16, |NA1≻A2
| could be as low as 1/2m2. This gives us a robust upper bound of distknap(f) ∈

O
(

m3

(1−2m2c)2γ2
min

)
when c < 1/2m2.

• For committee selection knapsack, in Theorem 17, |NA1≻A2 | could be as low as 2/m, resulting in distortion 1 + m
2 +

2 1−γmin

γmin(2−mc)m
2 when c < 2/m.

H Experiments
In this section, we discuss in detail the analysis of the cognitive load on voters for ranking pre-defined bundles.

The database of participatory budgeting elections taken from the Pabulib database (Faliszewski et al. 2023) is used to perform
the analysis in this section. To focus the analysis on participatory budgeting elections in practice, this excludes the elections run
on Mechanical Turk. All in all, there are 967 elections in the dataset.

Complete ordinal rankings are required for a constant distortion rule, so when this is not available, we fill in each voter’s miss-
ing preferences uniformly randomly. To get a full ranking over alternatives when the vote type is cumulative or scoring based,
we use the reported alternatives in the order and append the remaining alternatives to the end shuffled uniformly randomly.
When the vote type is approval, we also shuffle the order of the reported alternatives uniformly randomly before appending the
remaining unreported ones for each voter. Each election is run three times, and the number of bundles remaining is averaged.
The seeds used to fill in missing voter preferences uniformly in these experiments are randomly chosen at the beginning.

The experiments were conducted on a system running Windows 11, version 10.0.22631 Build 22631, with 16,091 MB of
RAM, and on a 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz CPU.
x’ The number of bundles voters rank in the second round of voting is shown in Figure 2 and Figure 3.

While already small the majority of the time, there are elections where the number of bundles voters rank are up to 10 times
more than the number of bundles. There is, however, redundancy in real world elections we can exploit here that allows us to
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Figure 2: A quantile plot of the number of bundles voters
have to rank using the constant distortion two round vot-
ing rule given in Section 5.3, on a log scale.
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Figure 3: A quantile plot of the number of bundles voters
have to rank per alterantive using the constant distortion
two round voting rule given in Section 5.3.

prune bundles we know are dominated from voter preferences before the second round of voting while maintaining constant
distortion.
Proposition 7. Consider the total ordering ≻C of the alternatives given by the iterated Copeland rule, and two bundles
B1, B2 ⊆ A. If there exists a 1-1 function f : B1 → B2 such that f(b) ≻C b for all b ∈ B1, then

sw(B1)

sw(B2)
⩽ 2γ−1

min − 1. (4)

Proof. When a ≻C b, by the distortion of Copeland given in Theorem 3.3 of Flanigan, Procaccia, and Wang (2023), sw(b) ⩽
(2γ−1

min − 1)sw(a). Therefore, for each b ∈ B1, we know that sw(f(b)) ⩽ (2γ−1
min − 1)sw(b). Summing over all b ∈ B1, we

get that
∑

b∈B1
sw(f(b)) ⩽ (2γ−1

min − 1)sw(B1). Because f is 1-1, we know that
∑

b∈B1
sw(f(b)) ⩽ sw(B2), which finally

implies
sw(B2)

sw(B1)
⩽ 2γ−1

min − 1.

Proposition 7 allows us to prune bundles before the second round of voting with a constant 1/γ2
min factor increase in distortion

in the worst case. Because Copeland gives us a total ordering, this induces a partial ordering over the bundles, the maximums
of which in our preselected bundles we ask voters to rank in the second round of voting.

The number of bundles voters rank in the second round of voting after pruning dominated bundles is shown in Figure 4 and
Figure 1
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Figure 4: A quantile plot over 967 real-world PB instances showing the number of bundles voters have to rank after pruning
dominated bundles, on a log scale.


