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Abstract
Participatory budgeting (PB) is an increasingly popular tool for democratically allocating limited

budgets to public-good projects. In PB, constituents vote on their preferred projects via ballots, and
then an aggregation rule selects a set of projects whose total cost fits within the budget. Recent work
studies how to design PB ballots and aggregation rules that yield low distortion outcomes (informally,
outcomes with high social welfare). Existing distortion bounds, however, rely on strong assumptions that
restrict voters’ latent utilities. We prove that low distortion PB outcomes can be achieved by dropping
these assumptions and instead leveraging the established idea that voters can be public-spirited: they
may consider others’ interests alongside their own when voting.

Flanigan et al. [2023] prove that in public-spirited single-winner voting (the special case of PB where
exactly one project can be funded) with ranking ballots, deterministic aggregation rules can achieve
constant distortion. Our first contribution is to extend this analysis to PB; there, we prove that the
best distortion permitted by deterministic rules with ranking ballots grows linearly in the number of
projects. We find that this impossibility—a problem in practice, where m is often large—holds for other
known ballots as well. Our second contribution is the design of a new PB ballot format that breaks this
linear distortion barrier. This ballot asks voters to rank a predetermined set of entire feasible bundles of
projects. We design multiple protocols for implementing these ballots, each striking a different trade-off
between the number of bundles voters must rank and the distortion: with m bundles, we get sublinear
distortion; with polynomial bundles, we get logarithmic distortion; and with pseudopolynomial bundles,
we get constant distortion.

1 Introduction
Governments at all scales regularly face the question: Which public-good projects — e.g., building bike paths
or installing streetlamps — should they fund with their limited budget? To make such decisions democratically,
governments are increasingly using participatory budgeting (PB), where a group of constituents convenes to
vote on which projects their government should fund. In PB, the government supplies a budget B and a list
of m potential projects with corresponding costs. Voters submit their preferences via ballots, which are then
aggregated via an aggregation rule. The output of this rule is a set of projects to be funded whose total cost
is at most B. PB is now used all over the world to allocate public funds1 [Participedia, 2023, De Vries et al.,
2022, Wampler et al., 2021].

When designing the PB process, one goal that many consider important is ensuring that the ultimate
allocation of funds has high societal benefit. As have many others (e.g., Benadè et al. [2021]), we formalize
the “societal benefit” of an allocation by its utilitarian social welfare: the total utility it gives to all voters.
As such, we adopt the standard model of latent additive utilities: each voter i has utility ui(a) ∈ R⩾0 for
each project a, and her total utility for a set of projects S being funded is ui(S) =

∑
a∈S ui(a). Then, the

social welfare of S is equal to sw(S) =
∑

i∈N ui(S).

1See https://en.wikipedia.org/wiki/List_of_participatory_budgeting_votes for a list of use cases.
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If voters’ utilities were known, choosing the maximum-welfare allocation would amount to solving the
knapsack problem. However, in practice voters’ preferences can only be elicited more coarsely through ballots.
One popular PB ballot format is rankings by value, where voters rank all individual projects. It is not hard
to see that this ballot format loses far too much information about voters’ utilities: suppose there are two
projects a and b, and they both cost B so we can fund only one. If the utilities for (a, b) are (1, 0) for half the
population and (0, X) for the other half (so, the welfare of b is X times that of a), the resulting ballots will be
symmetric. Any deterministic aggregation rule will choose a without loss of generality, suffering unbounded
welfare loss as X grows large; the best a randomized aggregation rule can do is to choose a project uniformly
at random.

This example illustrates a prohibitive impossibility: in the worst case, any deterministic rule over ranking
ballots will select an outcome with arbitrarily sub-optimal social welfare (and while randomized rules can do
better, they do so trivially by ignoring voters’ preferences). In fact, this impossibility holds for all widely-
studied ballots in the PB literature due to the same example (see Appendix B). Formally, this sub-optimality
is captured with the distortion: the worst-case (over latent utilities) ratio between the best possible social
welfare and that of the outcome. Existing work sidesteps this impossibility by assuming that each voter’s
utilities sum to 1 [Benadè et al., 2021]. Although this permits bounded distortion in theory, it is unclear
whether these bounds apply in practice: for example, this assumption may not hold in the likely case that all
public-good projects on the ballot will more greatly benefit lower-income constituents.

Fortunately, recent work by Flanigan et al. [2023] offers a source of hope: under unrestricted utilities, they
achieve low distortion in single-winner elections by leveraging the idea that voters may be public-spirited:
when casting their ballots, voters consider others’ interests in addition to their own. While it is not clear that
such public-spirited voting behavior would be reliably present in the wild, as Flanigan et al. argue in-depth,
research suggests that public spirit can be cultivated via democratic deliberation [Kinder and Kiewiet, 1981,
Wang et al., 2020, Gastil et al., 2010] — a practice that is already commonplace in PB elections [Participedia,
2023, De Vries et al., 2022]. The possibility of cultivating public spirit among PB participants motivates our
main research question:

Question: If voters are public-spirited, can we design PB elections that achieve low (perhaps
even constant) distortion with unrestricted voter utilities?

An affirmative answer to this question would support deliberation as a practicable approach to achieving
higher-welfare PB outcomes. While this question builds on Flanigan et al. [2023], answering it will require
fundamentally new methods because Flanigan et al’s results apply only to single-winner voting, a substantially
restricted version of the PB setting in which all projects cost B.

1.1 Our Contributions
In the public-spirited voting model of Flanigan et al. [2023], each voter i has some public spirit level
γi ∈ [0, 1]. She then evaluates each alternative (project) a ∈ [m] according to her public-spirited (PS) value
vi(a) := (1 − γi)ui(a) + γisw(a), the convex combination of her own utility and the social welfare. Note
that this generalizes the standard model in which γi is assumed to be 0 (that is, i evaluates a based on just
her own utility). We extend Flanigan et al.’s model to PB by assuming additive valuations, so i’s PS-value
for a set of projects S is simply vi(S) =

∑
a∈S vi(a). Like Flanigan et al. [2023], our distortion bounds are

parameterized by γmin = mini γi, the minimum public spirit level of any voter. For simplicity, we summarize
our main results below assuming γmin is a constant.

We first consider the canonical rankings ballot format also studied by Flanigan et al. [2023], where voters
rank all individual projects by their value. For our first main contribution, we show that the best distortion
achievable by any deterministic PB rule using ranking ballots is Θ(m); for randomized rules, it is Θ(log m)
(Section 3). Our upper bounds are proven via general reductions from PB to single-winner elections, which
may be of independent interest; proving and applying these reductions also leads to new results for the
single-winner setting. Our lower bounds imply a fundamental separation between the single-winner voting
and PB under public spirit: in single-winner voting with ranking ballots, there are deterministic rules that
achieve constant distortion [Flanigan et al., 2023].
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Ranking-by-value Public-Spirit Unit-Sum

Single-winner Deterministic Θ (1/γmin · min{m, 1/γmin}) Θ(m2)
Randomized Θ (min{m, 1/γmin}) Θ(

√
m)

Participatory Budgeting Deterministic Ω (m/γmin), O (m/γmin · min{m, 1/γmin}) Θ(m2)
Randomized Ω (log m), O (min{m, (log m)/γmin}) Ω(

√
m), O (

√
m log m)

Table 1: Asymptotic (in m, γmin) distortion bounds for rankings-by-value, comparing results for Single-winner
and Participatory Budgeting ballots. The unit-sum results are derived in Benadè et al. [2021] and are included
for comparison.

Our linear lower bound of Ω(m) for deterministic rules is especially bad news: deterministic rules are
typically used in practice, and in many PB elections, m can be in the hundreds or thousands (see Footnote 1).
Focusing henceforth on deterministic rules, we pursue sublinear distortion by broadening our consideration to
other ballot formats. Unfortunately, in Section 4 we find that none of the main PB ballot formats studied in
past work (rankings by value-for-money, k-approval, knapsack, and threshold approval — see Benadè et al.
[2021] for an overview) permit sublinear distortion (in m). Establishing this linear distortion barrier faced by
existing PB ballot formats under public spirit constitutes our next main contribution.

Motivated by this impossibility, in Section 5 we introduce rankings of predefined bundles, a novel PB
ballot format that asks voters to rank entire bundles of projects rather than individual projects. We show
that with carefully-chosen bundles, this ballots format does permit sublinear distortion in PB. Further, with
sufficient (but still fairly limited) information about voters’ preferences elicited ahead of time, they can even
drop the distortion to constant. We study three protocols for using this ballot format, each eliciting more
information than the last in exchange for lower distortion:

1. Protocol 1 permits O(
√

m) distortion and asks voters to rank at most m feasible bundles.

2. Protocol 2 permits O(log m) distortion and is a two-round protocol: in round 1 voters rank individual
projects, then in round 2 they rank at most log m bundles crafted based on their votes in round 1.

3. Protocol 3 permits O(1) distortion. It is similar to Protocol 2 except that in round 2, voters rank
O(m1+log log m) feasible bundles in the worst case.

While Protocol 3 may be impractical in the worst case, we provide empirical evidence that in realistic PB
elections, even Protocol 3 would require voters to rank less than m bundles (Section 6). From a theoretical
standpoint, Protocol 3 demonstrates the possibility of constant distortion with only pseudo-polynomial bits
of information, raising the tantalizing open question of whether constant distortion can be achieved with only
polynomially many bits.

1.2 Related Work
Our work builds most directly on Flanigan et al. [2023], who introduced the public-spirited model. We
generalize their work from single-winner elections to the more general PB setting; and while they consider
only deterministic aggregation rules, we additionally consider randomized rules. In the process, we prove
new insights for the single-winner case. Our work also directly builds on the works of Benadè et al. [2021],
who analyzed distortion in PB under the unit-sum utilities assumption. We contrast our bounds to those
achievable in their model in Section 4.

Procaccia and Rosenschein [2006] introduce the distortion framework in single-winner elections under the
unit-sum assumption. We now know that the best distortion achievable by deterministic and randomized
rules for this special case are Θ(m2) [Caragiannis and Procaccia, 2011, Caragiannis et al., 2017] and
Θ(

√
m) [Boutilier et al., 2015, Ebadian et al., 2022], respectively. Optimal distortion bounds have also been

identified for k-committee selection [Caragiannis et al., 2017, Borodin et al., 2022], which is still a special case
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Public-Spirit Unit-Sum
k-approvals (k > 1) ∞ ∞
1-approval Θ

(
m2

/γmin

)
Θ(m2)

Knapsack Ω (m/γmin), O
(

m3
/γ2

min

)
Ω(2m

/
√

m), O (m2m)

Ranking of Predefined Bundles
(One Round) O (

√
m/γ2

min) Ω(m2)

Ranking of Predefined Bundles
(Two Round) O ((log m)/γ4

min) Ω(m2)

Table 2: Asymptotic (in m, γmin) deterministic distortion bounds across ballot formats other than ranking-
by-value. The bottom rows are the new ballots introduced in this paper. The unit-sum results are derived in
Benadè et al. [2021] and are included for comparison.

of PB. Some have studied unit-range utilities or metric costs in place of unit-sum utilities [Filos-Ratsikas and
Miltersen, 2014, Anshelevich et al., 2018], but all these models directly restrict voters’ cardinal preferences.
For further details, see the survey of Anshelevich et al. [2021].

Multiple approaches other than distortion have been studied for PB. The axiomatic approach has been
used to identify aggregation rules satisfying desirable axioms such as various monotonicity properties Talmon
and Faliszewski [2019], Baumeister et al. [2020], Rey et al. [2020]. Another important consideration in PB is
whether the allocation of funds is fair with respect to (groups of) voters [Fain et al., 2018, Peters et al., 2021,
Brill et al., 2023]. For further details, we suggest the survey of Rey and Maly [2023] and the book chapter of
Aziz and Shah [2021].

2 Model and Preliminaries
We let [k] = {1, . . . , k} for any k ∈ N, and for a finite set S, let ∆(S) denote the set of probability distributions
over S. We introduce the general framework of participatory budgeting (PB) first, and later introduce
single-winner and multiwinner voting as its special cases.

Alternatives A, budget B, and costs c. In a PB instance, there is a set of n voters N = [n] and a set
of m alternatives (projects) A. We denote voters by i, j and alternatives by a, b. There is a total budget of B,
which is normalized to 1 without loss of generality, and a cost function c : A → [0, 1], where c(a) is the cost of
a. Slightly abusing notation, denote by c(S) =

∑
a∈S ca the total cost of alternatives in S.

Utilities U . Each voter i ∈ N has a utility for each alternative a ∈ A denoted by ui(a) ∈ R⩾0. Together,
these utilities form a utility matrix U ∈ Rn×m

⩾0 . The social welfare of a ∈ A w.r.t. utility matrix U is
sw(a, U) =

∑
i∈N ui(a); for any set of alternatives S ⊆ A, sw(S, U) =

∑
a∈S sw(a, U). We use sw(a) or sw(S)

when U is clear from context.

PS-levels γ⃗ and PS-values V . Following Flanigan et al. [2023], we assume that each voter i ∈ N has a
public spirit (PS) level γi ∈ [0, 1], and, together, these PS-levels form the PS-vector γ⃗ ∈ [0, 1]n. For a given γ⃗,
we let γmin := mini∈N γi be the minimum level of public spirit among voters. Each voter i evaluates each
alternative a by her PS-value vi(a), a convex combination of her personal utility ui(a) and sw(a)/n, the
average voter’s utility for a:

vi(a) = (1 − γi) · ui(a) + γi · sw(a)/n.

Note that this model does not restrict voters’ utilities; rather, it assumes something about how they
translate their utilities into votes. These PS-values form the PS-value matrix Vγ⃗,U ∈ Rn×m

⩾0 . For each S ⊆ A,

4



let vi(S) :=
∑

a∈S vi(a).

Instances and special cases. An instance of the PB problem is composed of the elements defined so
far: I = (A, B, c, U, γ⃗). Let I be the set of all PB instances. Let F(I) = {S ⊆ A : c(S) ⩽ 1} be the set of
budget-feasible subsets of A in instance I. F will be a generic such set.

We will sometimes build our results using ideas from k-committee selection and single-winner voting — two
restrictions of the PB setting. Formally, all instances of k-committee selection are captured when I is
exclusively restricted to instances I with c(·) = 1/k (i.e., all alternatives have cost 1/k), so F(I) consists of
all subsets of alternatives of size k. Single-winner voting is the further restriction in which c(·) = 1. We will
let Isingle-win := {I|c(·) = 1} denote the set of all single-winner voting instances.

Ballot formats. Since it is cognitively burdensome for voters to report cardinal preferences, preferences
are often elicited using discrete ballots. We denote a generic ballot format as X, and let ρi(I, X) be the ballot
submitted by voter i in instance I. Correspondingly, let ρ⃗(I, X) = (ρ1(I, X), . . . , ρn(I, X)) be the vote profile.
When I, X are clear, we will drop these from the notation. In Section 5, we will design multi-round elicitation
protocols; when there are multiple rounds, a “vote profile” will refer to the profile of votes collected in the
final round of elicitation.

We primarily consider ordinal ballot formats, of which we study two types. First, we consider canonical
ranking ballots (X = rank), which ask voters to rank alternatives. Then, ρi(I, rank) is the permutation of A
implied by the ordering of i’s PS-values, so vi(a) > vi(b) ⇒ a ≻ρi(I,rank) b for all a, b ∈ A (ties are broken
arbitrarily, and a ≻ρ b denotes that a is ranked ahead of b in ballot ρ). We then introduce a novel ordinal ballot
format, ranking of predefined bundles (X = rank-b), which asks voters to rank entire bundles of alternatives.
Formally, the rank-b ballot format accepts an argument of a collection of predefined bundles P ⊆ F(I); then,
ρi(I, rank-b(P)) is a permutation of the elements of P such that vi(S) > vi(S′) ⇒ S ≻ρi(I,rank-b(P)) S′ for all
S, S′ ∈ P. To paint a more complete picture, we also consider other non-ordinal ballot formats in Section 4.

Aggregation rules. A (randomized) aggregation rule f takes as input the vote profile ρ⃗ (from the final
round of elicitation, if there are multiple rounds) and returns a distribution over feasible bundles (an element
of ∆(F)). We say that f is deterministic if its output always has singleton support. We will sometimes talk
about single-winner rules versus PB rules. Formally, a single-winner rule must output an element of ∆([m])
while a PB rule can output any element of ∆(F).

We will frequently use the rule Copeland, so we define it here. Copeland is traditionally defined for
the single-winner case with rank ballots. We make the natural extension here to define Copeland also for
rank-b(P) ballot formats. All other rules we consider are defined as needed.

Definition 1 (Copeland). Each alternative has a score, equal to the number of alternatives it defeats in
pairwise elections. The Copeland winner is the one with the highest score.

When we want to choose multiple winners W , we often use the rule Iterative Copeland: Copeland is used,
the winner is added to W and removed from the election, and then Copeland is run again on the remaining
instance, and so on.

Distortion. The distortion measures the efficiency of a combination of a ballot format and an aggregation
rule (if there are multiple rounds, the rule applies to the final round). Formally, it is the worst-case over all
instances of the ratio between the best achievable social welfare and the output of the aggregation rule. Our
bounds will depend explicitly on m and γmin, so we denote the subset of I with m, γmin as

Im,γmin := {I ∈ I : |A| = m ∧ mini∈N γi = γmin}.

Then, the distortion is defined as

distX(f) = sup
n⩾1

sup
I∈Im,γmin

maxS∈F(I) sw(S, U)
ES′∼f(ρ⃗(I,X))sw(S′, U) .
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We sometimes study a rule’s distortion in the single-winner case, where the set of instances is restricted
to Isingle-win. The single-winner distortion distsingle-win

X (f) is therefore defined identically to distX(f) except
the second supremum is taken over Isingle-win

m,γmin
(analogous to Im,γmin).

Our distortion bounds will assume m ⩾ 2 and γmin ∈ (0, 1]. We are interested in the lowest distortion
possible by any aggregation rule using a given ballot format; this is a measure of the usefulness of the
information contained in the ballot format for social welfare maximization.

Preliminaries. For comparison, in Appendix B we prove that with no public spirit and unrestricted utilities,
for all ballot formats we consider, all deterministic rules have unbounded distortion and the randomized
rules have at least m distortion. In Section 4 we also contrast many of our bounds to those achievable under
unit-sum utilities.

Our upper bounds will often use the following lemma, which is a simple generalization of Lemma 3.1 of
Flanigan et al. [2023].

Lemma 1. Let A1, A2 ⊆ A be any two subsets of alternatives. Fix any α ⩾ 0 and define NA1≻A2 = {i ∈ N :
αvi(A1) ⩾ vi(A2)}. Then:

sw(A2)
sw(A1) ⩽ α ·

(
1 − γmin

γmin

n

|NA1≻A2 |
+ 1
)

.

Proof. The proof is the same as that of Lemma 3.1 by Flanigan et al. [2023]. Indeed, for each voter i ∈ NA1≻A2 ,
we know that αvi(A1) ⩾ vi(A2), and so,

α

(
(1 − γi)ui(A1) + γi

sw(A1)
n

)
⩾ (1 − γi)ui(A2) + γi

sw(A2)
n

⩾ γi
sw(A2)

n
.

Dividing by γi and using the fact that 1−γi

γi
is decreasing in γi we have,

α

(
1 − γmin

γmin
ui(A) + sw(A1)

n

)
⩾

sw(A2)
n

.

Summing over all voters in NA1≻A2 ,

α

(
1 − γmin

γmin

∑
i∈NA1≻A2

ui(A1) + sw(A1) |NA1≻A2 |
n

)
⩾

sw(A2) |NA1≻A2 |
n

.

Using the fact that
∑

i∈NA1≻A2
ui(A1) ⩽

∑
i∈N ui(A1) = sw(A1),

α

(
1 − γmin

γmin
sw(A1) + sw(A1) |NA1≻A2 |

n

)
⩾

sw(A2) |NA1≻A2 |
n

.

So, after some simplification, we finally get the desired upper bound:

sw(A2)
sw(A1) ⩽ α

(
1 − γmin

γmin

n

|NA1≻A2 |
+ 1
)

.

In Appendix D, we also prove a robust version of Lemma 1 showing that its guarantee degrades smoothly
as an increasing number of voters have γi = 0. We further show there that we can replace Lemma 1 with its
robust version in all our upper bound proofs, meaning that our upper bounds degrade smoothly as well.

3 PB with Rankings over Projects
We begin by studying ranking ballot format rank, the canonical ballot format in single-winner election and
the one studied by Flanigan et al. [2023] (for only deterministic aggregation rules). Here we extend their
results to PB for deterministic and randomized rules.
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3.1 Deterministic Rules
We begin by upper-bounding the distortion of Copeland in PB, due to its strong performance in the
single-winner case.
Theorem 1. distrank(Copeland) ∈ O

(
m/γ2

min
)
.

Proof. First, we prove a general reduction that converts any deterministic single-winner rule to a deterministic
PB rule.

Lemma 2 (PB → Single-Winner). For any d ⩾ 1, any deterministic rule f with distortion d in single-
winner voting has distortion distrank(f) ⩽ m · d in participatory budgeting.

Proof. The proof of this lemma is straightforward: fix any instance and let f return the singleton set {a}.
Let A∗ be an optimal budget-feasible set. Then,

sw(A∗)
sw(a) =

∑
a∗∈A∗

sw(a∗)
sw(a) ⩽ m · max

a∗∈A∗

sw(a∗)
sw(a) ⩽ m · d.

Intuitively, a factor of m should be incurred from single-winner to PB: unlike in the single-winner case, in
PB even when γmin = 1 (so all voters vote unanimously for the highest-welfare alternative), it can remain
unclear how to make cost trade-offs without cardinal information, and deterministic rules still incur Ω(m)
distortion. To conclude the proof, we apply this reduction via the following bound on Copeland’s distortion
in the single-winner case, proven in Thm. 3.3 of Flanigan et al. [2023]:

distsingle-win
rank (Copeland) ∈ O(1/γ2

min). (1)

Now, we prove a lower bound on the distortion achievable by any deterministic aggregation rule in the
PB setting.
Theorem 2. Every deterministic rule f has distortion

distrank(f) ∈ Ω (m/γmin) .

Proof sketch. The full proof is in Appendix A.1. The lower bound instance has only two (maximal) feasible
sets, one containing a single alternative a and the other containing the remaining alternatives. A few voters
rank a above the other alternatives, while all other voters do the opposite. Through detailed calculations, we
show that there exist utilities for which either choice can be sub-optimal by Ω(m/γmin).

Together, Theorems 1 and 2 imply that Copeland achieves optimal dependency on m and is within a
1/γmin factor of optimal overall. There are two possible sources of this remaining gap: our use of (or analysis
of) a single-winner rule via the reduction in Lemma 2, and our choice to apply the reduction specifically
Copeland. To shed light on the role of each of these, we now prove a universal lower bound showing that at
least for large m, Copeland is an optimal single-winner rule. This is a novel finding of independent interest
for the single-winner case, given that Flanigan et al. [2023] do not give any universal lower bounds.
Theorem 3. For all deterministic single-winner rules f ,

distsingle-win
rank (f) ∈ Ω(min{m/γmin, 1/γ2

min}).

The proof, found in Appendix A.2, uses a cyclic profile, where an equal number of voters submit each of
m cyclically shifted permutations. The contribution is in the intricate derivation of the piecewise bound.

Comparing Equation (1) and Theorem 3 when m ∈ Ω(1/γmin), Copeland’s distortion matches this lower
bound. When m ∈ o(1/γmin), Plurality, which selects the most common first-choice alternative, provides a
matching distortion upper bound of O(m/γmin) [Flanigan et al., 2023, Proposition 3.5]. Hence, this lower
bound “resolves” the deterministic single-winner case in that for every regime of m and γmin, there is some
voting rule that asymptotically matches it. Whether a single, γmin-oblivious rule can do so remains open for
future work.
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3.2 Randomized Rules
We take a parallel approach to analyze what distortion is achievable with rank ballots and randomized rules.
Because Flanigan et al. [2023] did not study randomized single-winner rules, we must first identify and analyze
a low-distortion single-winner rule anew—a result that is of independent interest for the single-winner case.

An Upper Bound With Maximal Lotteries

We select the Maximal Lottery rule, a single-winner rule originally proposed by Kreweras [1965].2

Definition 2 (Maximal Lottery). The (directed) domination graph G consists of a vertex corresponding
to each alternative a ∈ A, and an edge from a to b whenever a defeats b in a pairwise election (ties can be
broken arbitrarily). The maximal lottery rule returns a distribution p over the vertices such that for any
vertex b ∈ A, the probability of picking b or a vertex a with an edge to b is at least 1/2. The existence of
such a distribution can be inferred from, e.g., Farkas’ lemma (see Thm. 2.4 of Harutyunyan et al. [2017]).

We now upper-bound Maximal Lottery’s distortion in PB:

Theorem 4. distrank(Maximal Lottery) ∈ O(log(m)/γmin).

Proof. We again begin by proving a general-purpose reduction to convert single-winner rules to PB rules.
The reduction in the randomized case is more involved, and we do it in two steps: we first reduce PB to
committee selection (Lemma 3), and then reduce that to single-winner voting (Lemma 4). The first reduction
incurs an O(log m) overhead; the latter incurs none (asymptotically).

Lemma 3 (PB → Committee). Fix any d ⩾ 1. If there exists a randomized k-committee selection rule
fm′,k with distortion at most d for each m′ ⩽ m and k ∈ [m′], then there exists a randomized participatory
budgeting rule f with distortion at most distrank(f) ⩽ 2d · (⌈log2(m)⌉ + 1).

Proof. Fix any PB instance. Split the alternatives into buckets A0, A1, . . . , A⌈log2(m)⌉, where A0 = {a ∈ A :
ca ⩽ 1/m} and for i ̸= 0, Ai =

{
a ∈ A : 2i−1/m < ca ⩽ 2i/m

}
.

The randomized PB rule f is as follows:

1. Sample j ∈ {0, 1, . . . , ⌈log2(m)⌉} uniformly.

2. Consider the restricted instance with only the alternatives in Aj . That is, with m′ = |Aj | and
k = min(m′,

⌊
m
2j

⌋
), use the k-committee selection rule fm′,k to pick a set of k alternatives and return it.

Let A∗ be the optimal budget-feasible subset of the alternatives, L∗
j be the optimal

⌊
m
2j

⌋
-committee of Aj ,

and Lj be the one selected by the k-committee rule. For j ̸= 0, A∗ ∩ Aj is of size at most m
2j−1 . That means

sw(A∗ ∩ Aj) ⩽ 2sw(L∗
j ) for any j ̸= 0.

In addition, for j = 0, L∗
0 = A0 which implies sw(A∗ ∩ Aj) ⩽ sw(L∗

j ). Since the k-committee selection rule
has distortion of d for any j, we have sw(L∗

j ) ⩽ dsw(Lj), implying that sw(A∗ ∩ Aj) ⩽ 2dsw(Lj). Letting δ
be the distribution of the mechanism output, we deduce the desired bound:

EL∼δ[sw(L)] = 1
⌈log2(m)⌉ + 1

⌈log2(m)⌉∑
j=0

sw(Lj)

⩾
1

⌈log2(m)⌉ + 1

⌈log2(m)⌉∑
j=0

sw(A∗ ∩ Aj)
2d

⩾
sw(A∗)

2d(⌈log2(m)⌉ + 1) .

2This rule has been rediscovered numerous times [Laffond et al., 1993, Fishburn, 1984, Fisher and Ryan, 1995, Rivest and
Shen, 2010]. To the best of our knowledge, this is the first analysis of this rule’s utilitarian distortion.
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Lemma 4 (Committee → Single-Winner). Fix any k ∈ [m] and d ⩾ 1. If there exists a single-winner
rule fm′ with distortion at most d for each m′ ⩽ m, then there exists a k-committee selection rule f with
distortion at most d. If fm′ is deterministic then so is f .

Proof. Let A∗ = {a∗
1, . . . , a∗

k} be the optimal budget-feasible set, sorted from highest social welfare to the
lowest so that i < j =⇒ sw(a∗

i ) ⩾ sw(a∗
j ). Let S denote the set of alternatives that our algorithm picks.

Consider the ith iteration of the procedure. Let a+
i be the alternative with the highest social welfare

among the remaining alternatives, and ai be the random alternative picked by the single-winner voting rule
in this round. We know that sw(a+

i ) ⩾ sw(a∗
i ) and since the single-winner rule has expected distortion of

d, we have E[sw(ai)] ⩾
sw(a+

i
)

d which implies E[sw(ai)] ⩾ sw(a∗
i )

d . Summing this over all iterations and using
linearity of expectation, we get that

k∑
i=0

E[sw(ai)] ⩾
k∑

i=0
sw(a∗

i ) / d =⇒ sw(A∗) /E[sw(S)] ⩽ d.

The log(m) overhead in Lemma 3 comes from partitioning the alternatives into O(log m) buckets and
then applying a k-committee selection rule to a random bucket (similar approaches appear in other work,
e.g. Benadè et al. [2021]). The proof of Lemma 4 generalizes ideas from an analogous reduction for deterministic
rules by Goel et al. [2018].

Next, to bound the distortion of Maximal Lottery via Lemmas 3 and 4, we must first upper-bound its
distortion in the public-spirited single-winner setting. The approach is to apply Lemma 1 using the insight
that Maximal Lottery picks either the optimal alternative or an alternative that pairwise-defeats it with
probability at least 1/2.

Theorem 5. distsingle-win
rank (Maximal Lottery) ∈ O (1/γmin) .

Proof. Let a∗ be the optimal alternative. If we pick a∗ or an alternative b that beats a∗ in a pairwise election,
by Lemma 1 we get distortion:

sw(a∗)
sw(b) ⩽ 21 − γmin

γmin
+ 1.

Let the set of such alternatives be A′ = {b ∈ A : |{i ∈ N : b ≻i a∗}| ⩾ n/2}. Then, the distortion of our rule
is:

sw(a∗)∑
a∈A p(a)sw(a) ⩽

sw(a∗)∑
a∈A′ p(a)sw(a)

⩽
sw(a∗)

(mina∈A′ sw(a))
∑

a∈A′ p(a)

⩽ 2 sw(a∗)
mina∈A′ sw(a) ⩽ 41 − γmin

γmin
+ 2 = 4

γmin
− 2.

Finally, applying Theorem 5 along with our reductions, we conclude that in the PB setting, Maximal
Lottery has distortion at most O(log(m)/γmin), as needed.

Lower Bounds

Now, we lower bound the distortion achievable by any randomized aggregation rule in the PB setting.

Theorem 6. For all randomized rules f ,

distrank(f) ∈ Ω(log(m)).
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Proof. Define k = ⌈
√

m⌉ − 1 and partition the alternatives into k + 1 buckets A1, . . . , Ak, B such that for
ℓ ∈ [k], Aℓ consists of ℓ alternatives with cost 1/ℓ each, and B includes the rest of the alternatives with cost 1
each. Note that each Aℓ is a feasible subset.

Suppose that all the voters have the same ranking where they rank every alternative in Aℓ higher than
every alternative in Aℓ′ for all ℓ < ℓ′ (and breaks ties within each Aℓ arbitrarily), and rank members of B at
the end of their ranking.

Consider any aggregation rule. For each a ∈ A, let pa denote the marginal probability of alternative a
being included in the distribution returned by the rule on this profile. For each ℓ ∈ [k], define p̄ℓ = 1

ℓ

∑
a∈Aℓ

pa

as the average of the marginal probabilities of alternatives in Aℓ being chosen. Since the rule returns a
distribution over budget-feasible subsets of alternatives (with total cost at most 1), the expected cost under
this distribution is also at most 1. Due to additivity of cost and linearity of expectation, the expected cost
can be written as ∑

a∈A

pa · ca ⩾
∑
ℓ∈[k]

(
1
ℓ

∑
a∈Aℓ

pa

)
=
∑
ℓ∈[k]

p̄ℓ ⩽ 1. (2)

Next, fix an arbitrary t ∈ [k]. Consider the following consistent utility function of the agent (which, in
this case, is also her PS-value function): v(a) = u(a) = 1 if a ∈ ∪ℓ∈[t]Aℓ and v(a) = u(a) = 0 otherwise. It is
evident that the budget-feasible subset with the highest social welfare (i.e., one which contains the highest
number of alternatives of value 1 to the agent) is At, and sw(At) = t. In contrast, using the additivity of the
utility function over the alternatives and linearity of expectation, we can write the expected social welfare
under the rule as

∑
a∈∪ℓ∈[t]Aℓ

pa · 1 =
∑

ℓ∈[t] ℓ · p̄ℓ, which means the distortion is at least

Dt = t∑
ℓ∈[t] ℓ · p̄ℓ

.

Because t ∈ [k] was fixed arbitrarily, we get that the distortion is at least D = maxt∈[k] Dt. Our goal is to
show that D = Ω(log m).

Note that for each t ∈ [k], we have

t∑
ℓ∈[t] ℓ · p̄ℓ

⩽ D ⇒
∑
ℓ∈[t]

ℓ · p̄ℓ ⩾
t

D
.

Dividing both sides by t(t + 1), we have that∑
ℓ∈[t]

ℓ

t(t + 1) · p̄ℓ ⩾
1

D · (t + 1) , ∀t ∈ [k].

Summing over t ∈ [k], the right hand side sums to (Hk+1 − 1)/D. On the left hand side, the coefficient of
each p̄ℓ is

ℓ

k∑
t=ℓ

1
t(t + 1) = ℓ

(
k∑

t=ℓ

1
t

− 1
t + 1

)
= ℓ

(
1
ℓ

− 1
k + 1

)
⩽ 1.

Hence, the left hand side sums to at most
∑

ℓ∈[k] p̄ℓ ⩽ 1. Since the left hand side is at least the right hand
side, we have that

1 ⩾
Hk+1 − 1

D
⇒ D ⩾ Hk+1 − 1 = H⌈√

m⌉ − 1,

which completes the proof after observing that

H⌈√
m⌉ ⩾ ln(

⌈√
m
⌉
) ⩾ ln(

√
m) = ln(m)/2.
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Together, Theorems 4 and 6 imply that Maximal Lottery achieves optimal dependency on m and is within
a 1/γmin factor of optimal overall. As before, we explore the source of this 1/γmin gap by showing that at
least for large m, Maximal Lottery is the optimal randomized single-winner rule:

Theorem 7. For all randomized single-winner rules f ,

distsingle-win
rank (f) ∈ Ω (min {m, 1/γmin}) .

This lower bound is proven in Appendix A.3 by the same construction as in Theorem 3, the analogous
lower bound for the deterministic case. As with Copeland in the deterministic case, this bound shows that
Maximal Lottery is optimal when m ⩾ Ω(1/γmin). When m ∈ o(1/γmin), this bound is matched by the rule
that chooses a uniformly random alternative. As before, whether a single γmin-oblivious randomized rule can
match this lower bound remains open.

4 PB with Other Known Ballot Formats
In Section 3, we found something that may initially seem strange: in both the randomized and deterministic
cases, voting rules designed for the single-winner setting—which output just a single alternative, even in
PB—achieved optimal dependence on m. This is due to the weakness of the rank ballot format: designed for
single-winner voting, rank fails to capture fundamental aspects of the PB setting.

Others have tried to address this problem in the unit-sum utilities model by designing better ballot
formats. We now pursue the same approach in the public spirit model: focusing henceforth on deterministic
rules for their practicality, we aim to identify a ballot format that achieves sublinear distortion in m, thereby
surpassing our lower bound of Ω(m) in Theorem 2. To this end, we examine four other known PB ballot
formats (see Benadè et al. [2021]): rankings by value for money, where each voter i ranks alternatives by
vi(a)/c(a); k-approvals, where each voter i submits a set of k alternatives with the highest vi(a); knapsack,
where each voter i submits the budget-feasible set with the highest value vi(S); and threshold approvals,
where the ballot format specifies a threshold t and each voter i submits the set of alternatives with vi(a) ⩾ t.
Unfortunately, the answer is resoundingly negative for all these ballot formats.

The main goal of this section is to formally define the ballot formats mentioned in Section 4. In each
subsection we focus on one of the ballot formats and prove bounds on the optimal achievable distortion
with that ballot format using either deterministic or randomized rules. Furthermore, in Table 2 we show an
overview of all the bounds that we prove in this paper, and compare them to the results of Benadè et al.
[2021] under the unit-sum assumption.

Following the model of Benadè et al. [2021], a ballot format X : Rm
⩾0 × [0, 1]m → LX turns every PS-value

function into a “vote”, which takes values from a (usually finite) set LX, sometimes using the cost function
over the alternatives. Under this ballot format, each voter i submits the vote ρi = X(vi); together, these votes
form the input profile ρ⃗ = {ρ1, . . . , ρn}. We use Vγ⃗,U ▷X ρ⃗ to indicate that PS-value matrix Vγ⃗,U induces
input profile ρ⃗ under ballot format X. Alternatively, we say that ρ⃗ is consistent with Vγ⃗,U . We omit X when
it is clear from the context.

4.1 Rankings by Value for Money
In the ballot format rankings by value for money (vfm), Lvfm is still the set of all rankings over alternatives,
but now each voter i submits a ranking ρi of the alternatives by their PS-value divided by cost, i.e., such
that for every a, b ∈ A, vi(a)/c(a) > vi(b)/c(b) implies a ≻ρi b; the voter can break ties arbitrarily.

Deterministic Rules

Benadè et al. [2021] show that no deterministic rule for rankings by value for money can achieve bounded
distortion, even under the unit-sum assumption. Moreover, in their construction, all voters submit the same
ranking. Adding any amount of public spirit would therefore leave the rankings and their analysis unchanged,
implying that the distortion remains unbounded even with public spirit. We formalize this in Theorem 8.

11



Theorem 8 (lower bound). For rankings by value for money, every deterministic rule f has unbounded
distortion: distvfm(f) = ∞.

Proof. We use the exact same construction used by Benadè et al. [2021]. Fix a, b ∈ A, and let ca = ϵ > 0 and
cx = 1 for all x ∈ A \ {a}. Construct an input profile ρ⃗ where each voter has alternatives a and b in positions
1 and 2, and let f be some deterministic aggregation rule.

If f(ρ⃗, c) ̸= a, then construct a utility profile where ui(a) = 1 and ui(x) = 0 for all x ∈ A \ {a}. Then the
distortion is infinite.

If f(ρ⃗, c) = a, then construct a utility profile where ui(a) = ϵ, ui(b) = 1 and ui(x) = 0 for x ∈ A \ {a, b}.
Then,

vi(a)
ca

=
(1 − γi)ϵ + γi

(nϵ)
n

ϵ
= (1 − γi) + γi

1 = vi(b)
cb

,

and so the ranking of each voter is consistent with this utility profile. But, the distortion is:

n

nϵ
= 1

ϵ
,

which, as ϵ → 0, tends to infinity.

Randomized Rules

For randomized rules, we show the same upper bound (up to a constant) for rankings by value for money
as for rankings by value. The result uses a similar construction, too: First, we bucket alternatives as in
Lemma 3, so that the alternatives in each bucket differ in cost by a factor of at most 2. Due to these similar
costs, a ranking by value for money of the alternatives within any is a good approximation of their ranking by
value, allowing us to apply our reductions from PB to committee selection to single-winner selection, except
we lose an additional factor of 2.

Theorem 9 (upper bound). For rankings by value for money, there exists a randomized rule f with distortion

distvfm(f) ⩽ 8 (⌈log2(m)⌉ + 1)
(
2γ−1

min − 1
)

.

Lemma 5. For rankings by value for money, there exists a k-committee-selection voting rule f such that on
all sets of alternatives with costs in [2−ℓ, 21−ℓ] for some ℓ ⩾ 0, f has distortion 4(2γ−1

min − 1).

Proof. Notice that if a beats b, then vi(a)/ca ⩾ vi(b)/cb at least n/2 times. Since the costs differ by at most
a factor of 2, 2vi(a) ⩾ vi(b).

We can use the exact same rule as in Theorem 5. Indeed, everything is the same, except that when b
beats a∗ in a pairwise election (i.e. at least n/2 times), we get the following distortion by Lemma 1:

sw(a∗)
sw(b) ⩽ 2

(
21 − γmin

γmin
+ 1
)

.

Then, the distortion of our rule is, by the same analysis in Theorem 5:

81 − γmin

γmin
+ 4.

From here, we can convert this single-winner rule into a committee selection rule with the same distortion
by using Lemma 4.

Having proved this lemma, we utilise an argument similar to Lemma 3.
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Proof of Theorem 9. Let g be the rule in Lemma 5, and let the distortion it achieves,
(

4 1−γmin
γmin

+ 2
)

, be d.
By the same mechanism in Lemma 3, we will convert g to a ranking by value per cost rule.

Indeed, divide the alternatives into buckets A0, A1, . . . , A⌈log2(m)⌉, where for i ̸= 0:

Ai =
{

a ∈ A : 2i−1

m
< ca ⩽

2i

m

}
,

and
A0 = {a ∈ A : ca ⩽ 1/m}.

Recall the mechanism used:

1. Pick the bucket Aj uniformly at random.

2. Consider the restricted election with only the alternatives in Aj .

3. Use g to pick the top
⌊

m
2j

⌋
alternatives in the restricted election.

Consider any PB instance. Split the alternatives into buckets A0, A1, . . . , A⌈log2(m)⌉, where for i ̸= 0:

Ai =
{

a ∈ A : 2i−1/m < ca ⩽ 2i/m
}

,

and
A0 = {a ∈ A : ca ⩽ 1/m}.

The randomized PB rule f is as follows:

1. Pick j ∈ {0, 1, . . . , ⌈log2(m)⌉} uniformly at random.

2. Consider the restricted instance with only the alternatives in Aj .

3. With m′ = |Aj | and k = min(m′,
⌊

m
2j

⌋
), use the k-committee selection rule fm′,k on this restricted

instance to pick a set of k alternatives and return it.

Let A∗ be the optimal budget-feasible subset of the alternatives, L∗
j be the optimal

⌊
m
2j

⌋
-committee of Aj ,

and Lj be the one selected by the k-committee rule. For j ̸= 0, A∗ ∩ Aj is of size at most m
2j−1 . That means

sw(A∗ ∩ Aj) ⩽ 2sw(L∗
j ) for any j ̸= 0.

In addition for j = 0, L∗
0 = A0 which implies sw(A∗ ∩ Aj) ⩽ sw(L∗

j ). Since the k-committee selection rule
has distortion of d for any j we have sw(L∗

j ) ⩽ dsw(Lj) which gives us sw(A∗ ∩ Aj) ⩽ 2dsw(Lj). Let δ be the
distribution of the output of the mechanism, we have:

EL∼δ[sw(L)] = 1
⌈log2(m)⌉ + 1

⌈log2(m)⌉∑
j=0

sw(Lj)

⩾
1

⌈log2(m)⌉ + 1

⌈log2(m)⌉∑
j=0

sw(A∗ ∩ Aj)
2d

⩾
sw(A∗)

2d(⌈log2(m)⌉ + 1) ,

which gives us the desired distortion bound.

Whether this is (asymptotically) the best distortion that randomized rules for rankings by value for money
can achieve remains an open question.
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4.2 k-approval ballots
Approval-Based Ballots Another popular type of ballot—especially in participatory budgeting—is to
ask voters to simply approve their favorite items, rather than rank items relative to one another. The
most common type of approval-based ballots in practice is the k-approval ballot, in which voters “vote” by
identifying their k favorite alternatives. However, this ballot format has an important limitation in the PB
context: as we show, it allows voters to approve items or sets of items that are not budget-feasible. In the
worst case, this can leave the voting rule with little or no information about which budget-feasible allocations
are desirable, in which case it can do nothing better than making an arbitrary choice.

A natural potential fix for this is allowing voters to approve only sets of items that are budget-feasible.
This is can be achieved by either restricting our use to 1-approval ballots (and removing all items which
individually exceed the budget), or using Knapsack ballots, an approval-based ballot format in which voters
can approve any set of projects whose total cost does not exceed the budget. We explore both these directions
in this and the next subsections.

For the ballot format k-approval (k-app), the set of possible ballots Lk-app is the set of all subsets of size k
of A. That means each voter submits the set of her top k alternatives (breaking the ties arbitrarily). We
start by showing that asking voters to approve more than one alternative leads to an unbounded distortion.

Theorem 10 (LB - Deterministic). For k-approval ballot format with k ⩾ 2, any deterministic PB rule has
unbounded distortion.

Proof. Suppose we are using k-approval ballots. Let A be the alternatives, and suppose that each a ∈ A has
cost 1

k−1 . Suppose all agents have the same utilities, where ϵ > 0 is arbitrarily small, giving 1 utility to a1, ϵ
utility for all of a2 . . . ak, and 0 for all A \ {a1, . . . , ak}. Then, everyone’s public-spirited values are identical
to their utilities. All agents approve a1, . . . , ak, and the deterministic rule must pick k − 1 of these arbitrarily.
Let the deterministic rule pick a2 . . . ak. The best possible welfare is n, achieved by any k − 1-subset including
a1; the winner has welfare ϵn, making the distortion 1

ϵ (unbounded).

These lower bounds were for k ⩾ 2; one can also realize the same bounds with k = 1, where all voters
approve items whose costs exceed 1, giving the voting rule no information about which budget-feasible set
to choose. However, an obvious fix for this is to remove all items ahead of time that exceed the budget. If
we assume every individual item has cost at most 1, then 1-approval ballots ensure that voters can only
approve budget-feasible sets, escaping the problem described above. Then, 1-approval-based ballots are akin
to plurality voting, and they permit the following positive result:

Proposition 1 (UB, 1-app, Deterministic). If all alternatives have cost at most 1, then for 1-approval ballot
format, there exists a deterministic voting rule f with distortion

dist1-app(f) ∈ O
(

m2

γmin

)
.

Proof. Pick the most approved alternative a. This is in fact the plurality winner and by Theorem 1, the
plurality rule achieves the claimed distortion.

The following proposition shows that this is the best we can hope for.

Proposition 2 (LB, 1-app, Deterministic). For 1-approval ballot format, every deterministic rule f has
distortion

dist1-app(f) ∈ Ω
(

m2

γmin

)
.

Proof. We take m to be sufficiently large. Consider an instance with m
2 alternatives a1, . . . , am/2 of cost 1

and m
2 alternatives b1, . . . , bm/2 of cost 2

m , and all the voters have the same PS-value of γ = γmin. Suppose
2n
m voters vote for each ai.
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If a PB rule picks the bundle b1, . . . , bm/2, then consider the instance where every voter assigns a value of
1 to each ai and a value of 0 to each bi. This is consistent with the input, and results in infinite distortion.

Instead, suppose the PB rule, without the loss of generality, picks am/2. Then, suppose that every voter
who votes for am/2 gives it a value of γ m−2

m−2γ , and everything else a value of 0, and suppose that all other
voters give their top choice a value of 1, the bi a value of m−γ(m−2)

m−2γ , and everything else a value of zero.
Then, sw(bi) = m−γ(m−2)

m−2γ · m−2
m · n for all i from 1 to m

2 , and sw(ai) = 2n
m for i ̸= m

2 with sw(am/2) =
2n
m · γ m−2

m−2γ .
Then, the utilities for voters i who vote for am/2 are consistent as

vi(am/2) = (1 − γ)γ(m − 2)
m − 2γ

+ γ
m − 2

m − 2γ

2
m

= γ(m − 2)
m − 2γ

(
1 − γ + 2

m

)
= γ(m − 2)

m − 2γ

m − γm + 2
m

⩾ γ
m − γ(m − 2)

m − 2γ

m − 2
m

= vi(bj)

for all bj , where the last inequality holds because 2 ⩾ 2γ. Similarly,

vi(am/2) = (1 − γ) m − 2
m − 2γ

+ γ
m − 2

m − 2γ

2
m

= m − 2
m − 2γ

m − γ(m − 2)
m

⩾ γ
2
m

= vi(aj)

for all aj ̸= am/2, where the last inequality holds for sufficiently large m, so am/2 is indeed the alternative of
highest value.

The utilities of voters i who vote for aj ̸= am/2 is consistent, as

vi(bi) = (1 − γ)m − γ(m − 2)
m − 2γ

+ γ
m − γ(m − 2)

m − 2γ
· m − 2

m

= m − γ(m − 2)
m − 2γ

(
1 − γ + γ

m − 2
m

)
= m − γ(m − 2)

m

= (1 − γ) + γ · 2
m

= vi(aj)

for all bi. And vi(aj) ⩾ vi(ak) for all k ̸= j as sw(ak) ⩽ sw(aj) and voter i gives ak zero utility. So, aj is
indeed the highest ranking alternative.

But, the distortion we get is∑
i sw(bi)

sw(am/2) = m

2 · m − γ(m − 2)
m − 2γ

· n ·
(

2n

m
· γ

m − 2
m − 2γ

)−1

= m2

4 · m − γ(m − 2)
γ(m − 2)

= m2

4 ·
(

1
γ

· m

m − 2 − 1
)

⩾
m2

4 · 1 − γ

γ
,
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as claimed.

Remark 1. While not explicitly studied in Benadè et al. [2021], a deterministic distortion of Θ(m2) in the
1-approval ballot format follows from their analysis of the ranking by value ballot format immediately, as it
simply uses a plurality rule to aggregate voter preferences.

While 1-approval ballot sounds practical, it does not yield a good distortion since the basic potential of
PB (which is selecting multiple alternatives if the budget allows) is not used. However, this is really the best
we can hope for with k-approval ballots. This motivates the consideration of knapsack ballots, which elicits
the top budget-feasible subset from each voter’s perspective.

4.3 Knapsack ballots
For the ballot format knapsack (knap), the set of possible ballots Lknap = F is the set of all budget-feasible
subsets of A. Each voter i submits the subset she values most: ρi ∈ arg maxS∈F vi(S). This amounts to
asking each voter to solve her own personal knapsack problem.

Unfortunately, similar to what happens with 1-app ballots, an instance similar to the one in Proposition 2
also applies to knapsack ballots, since voters are only permitted to approve budget-feasible allocations, which
all consist of one single item.

Corollary 1 (LB, knap, Deterministic). For knapsack ballot format, every deterministic rule f has distortion

distknap(f) ⩾ mγ−1
min − m + 1 ∈ Ω

(
m

γmin

)
.

For randomized rules, we prove a slightly weaker lower bound that is γmin times our lower bound for
deterministic rules. As γmin goes from 0 to 1, the lower bound for deterministic rules goes from unbounded
to 1 while that for randomized rules goes from m to 1. It is easy to observe that both lower bounds are tight
at both extremes, but there may be room for improvement for intermediate values of γmin. The proof is in
Theorem 11.

Theorem 11 (LB, knap, Randomized). For knapsack ballot format, every randomized rules f has distortion

distknap(f) ⩾ m(1 − γmin) + γmin.

Proof. Formally, consider a case where n is divisible by m, all the voters have the same PS-value of γ = γmin,
and every alternative a ∈ A has a cost of ca = 1. In this case, each vote consists of exactly one alternative.
For any alternative a ∈ A, let Na be the set of voters who vote for alternative a. Choose the input profile ρ⃗
so that n/m voters vote for each alternative so that |Na| = n

m for all a ∈ A. Our randomized voting rule f
must pick some alternative a∗ with probability at most 1/m.

Suppose that all voters in Na∗ have a utility of m(1−γ)+γ
γ for a∗ and utility zero for everything else.

Moreover, voters in Na with a ̸= a∗ have utility 1 for a and zero utility for the rest of the alternatives. We
can see that the social welfare of a∗ is m(1−γ)+γ

γ · n
m , and the social welfare of any other alternative is n

m .
First of all, we have to make sure that this utility matrix and PS-vector yield a value matrix consistent

with the input profile. For any a ̸= a∗ and i ∈ Na we have:

vi(a∗) = γ
m(1 − γ) + γ

γ
· 1

m

= m(1 − γ) + γ

m
= (1 − γ) + γ

m
= vi(a).
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Furthermore, for voter i ∈ Na∗ and any a ̸= a∗ as:

vi(a∗) = (1 − γ)m(1 − γ) + γ

γ
+ γ

m(1 − γ) + γ

γ
· 1

m

=
(

1 − γ
m − 1

m

)
m(1 − γ) + γ

γ

= m − γ(m − 1)
m

· m(m − γ) + γ

γ

= γ

m
· (1 − γ)m + γ

γ
· m(m − γ) + γ

γ

⩾
γ

m
= vi(a),

where the last inequality follows from the fact that γ ⩽ 1. That means the value matrix is consistent with
the input profile for all the voters.

After that, we can see the distortion that the rule incurs. We could have gotten a utility of n
m · m(1−γ)+γ

γ
by choosing a∗, but instead, we got the expected utility of the following

Ea∼f(ρ⃗,c)[sw(a)] ⩽ 1
m

sw(a∗) + m − 1
m

· n

m

= 1
m

· n

m
· m(1 − γ) + γ

γ
+ m − 1

m
· n

m

= n

(
m(1 − γ) + γ + (m − 1)γ

m2γ

)
= n

γm
,

and so the distortion is at least:

distknap(f, ρ⃗, c) = sw(a∗)
Ea∼f(ρ⃗,c)[sw(a)]

⩾
n
m · m(1−γmin)+γmin

γmin
n

γminm

= m(1 − γmin) + γmin.

This lower bound is trivially tight in m. We show this by having m alternatives of cost 1 each, and n
m

voters approving each one.
Remark 2 (UB, knap, Randomized). The voting rule f which ignores all the ballots and simply picks a
single alternative uniformly at random trivially yields an upper bound of distknap(f) ⩽ m.

Finally, we present upper bounds for knapsack due to its importance in the literature. In the unit-sum
model, Benadè et al. [2021] give exponential lower bounds for the knapsack ballot format. We are able
to prove that in the public-spirit model, it is possible to break this exponential barrier, showing that the
worst-case instances for knapsack in the unit-sum model rely on potentially infeasible voter preferences. In
doing so, we rely on new techniques for aggregating knapsack votes. This illustrates how public spirit can
be much more powerful than that pervasive assumption (which is hard to justify) in mitigating distortion,
especially when the number of alternatives is at all large.
Theorem 12 (UB, knap, Deterministic). For knapsack votes, there exists a deterministic rule f with distortion

distknap(f) ⩽ 4m3(γ−2
min − γ−1

min) + 3m ∈ O

(
m3

γ2
min

)
.
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Proof. For any subset of alternatives S ⊆ A, let nS :=
∑

i∈N I(S ⊆ ρi) be the number of voters whose
knapsack set contains S. We use shorthand na := n{a} and na,b := n{a,b} for all a, b ∈ A. Then, informally,
na,b is the number of voters who vote for both a and b.

For an arbitrary input, define A0 := {a ∈ A : na ⩾ n
2m } and initialize A− = A0 and A+ = ∅. We will

return A+ after running the following until A− is empty:

1. Remove the alternative b with the highest cost in A− and add it to A+.

2. Remove from A− all alternatives a such that
na,b

nb
⩽

m − 1
m

.

First, we will prove that this algorithm always returns a budget-feasible subset. Suppose for the sake
of contradiction that at some point, the max-cost item in A−, call it am, is no longer within budget: i.e.,
cam +

∑
b∈A+ cb > 1. We will show that there exists some b ∈ A+ such that nb,am

nb
⩽ m−1

m .
Let bm ∈ A+ be the first alternative added to A+, so that it has maximum cost. Then, for all b ∈ A+ \{bm},

because b wasn’t pruned in step 2 directly after adding bm, it must be that nb,bm

nbm > m−1
m . By the same

reasoning, the same must be true for am — that is, nam,bm

nbm > m−1
m . Summing over these inequalities, we get

that:
nam,bm +

∑
b∈A+\{bm}

nbm,b > nbm

[
m − 1

m
+ m − 1

m

(∣∣A+∣∣− 1
)]

= nbm
m − 1

m

∣∣A+∣∣ .
Notice that the left hand side is at most the number of voters who voted for bm, multiplied by the number of
other alternatives in {am} ∪ |A+| they could have voted for. Since {am} ∪ A+ is an infeasible set, no voter
could have voted for all of them. Thus, each voter can only vote for |A+| alternatives in {am} ∪ |A+|, and so
only |A+| − 1 alternatives other than bm. The left hand side is then at most (|A+| − 1)nbm , and therefore

(
∣∣A+∣∣− 1)nbm > nbm

m − 1
m

∣∣A+∣∣ .
Simplifying, we can see that this is impossible, as this is equivalent to the inequality:∣∣A+∣∣− 1 >

∣∣A+∣∣−
∣∣A+∣∣ /m.

We have encountered a contradiction, so our premise — that we added an a to A+ that exceeded the
budget — must have been false.

Now, we will show that if an a ∈ A− is pruned in Step 2, then sw(a)
sw(A+) ⩽ 2m2 1−γmin

γmin
+ 1. Indeed, because

we prune it, there exists some b ∈ A+ such that:
na,b

nb
⩽

m − 1
m

.

Since b ∈ A0, we have nb ⩾ n/2m and so nb − na,b, the number of voters that vote for b but not a, is at least
n/(2m2):

nb − na,b ⩾ nb − m − 1
m

nb ⩾
n

2m2 .

Notice that because we pick the highest cost alternative b in each iteration, any alternative pruned later by
the algorithm must have a cost lower than cb. Therefore, any time a voter votes for b but not a, they could
have replaced b with a and have gotten another feasible set. The fact that they did not means that they
prefer b to a. We have at least n/(2m2) of such voters (that prefer b to a), by Lemma 1 we can conclude that

sw(a)
sw(A+) ⩽ 2m2 1−γmin

γmin
+ 1, as needed.

Extending this result, define m0 := |A0|, we get that

sw(A0)
sw(A+) ⩽ m0

(
2m2 1 − γmin

γmin
+ 1
)

.
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On the other hand, for alternatives outside of A0, the distortion must be small. Let A∗ be the optimal
budget-feasible set of alternatives. Then:

sw(A∗ \ A0)
sw(A+) = sw(A∗ \ A0)

sw(A0) · sw(A0)
sw(A+) .

It remains to bound sw(A∗\A0)
sw(A0) . Because at most n/(2m) voters include each alternative in A \ A0 in their

knapsack set, and there are at most m − m0 such alternatives, we know that at most n(m − m0)/2m voters
vote for alternatives in A\A0, that is at least n(m+m0)/2m voters only vote for alternatives in A0. Observing
that A∗ \A0 ∈ F (since A∗ ∈ F), it must be that for all n(m+m0)/2m voters i who vote for only alternatives
in A0, vi(A0) ⩾ vi(ρi) ⩾ vi(A∗ \ A0) for each a ∈ A \ A0. Therefore, by Lemma 1,

sw(A∗ \ A0)
sw(A0) ⩽

2m

m + m0
· 1 − γmin

γmin
+ 1.

Thus,

sw(A∗)
sw(A+) ⩽

sw(A0)
sw(A+) + sw(A∗ \ A0)

sw(A+) = sw(A0)
sw(A+) + sw(A∗ \ A0)

sw(A0) · sw(A0)
sw(A+)

⩽
sw(A0)
sw(A+)

(
1 + m

m0
· 1 − γmin

γmin
+ 1
)

⩽ m0

(
2m2 1 − γmin

γmin
+ 1
)(

m

m0
· 1 − γmin

γmin
+ 2
)

⩽ 2m3
(

1 − γmin

γmin

)2
+ 4m3 1 − γmin

γmin
+ m

1 − γmin

γmin
+ 2m

⩽ 4m3 (γ−2
min − γ−1

min
)

+ 3m.

It’s possible that for general Knapsack voting, this cannot be improved to match the lower bound that is
achieved in the case that reduces to plurality voting. This is because in the general case where people can
approve more than 1 alternative, although we have budget-feasible information, we don’t know what people’s
favorite element is in their approval set if it is greater than size 1.

Knapsack for Committee Selection

We can improve the analysis of the knapsack voting when all alternatives have the same cost.

Theorem 13. We can get a distortion of 1 + m
2 + 1−γmin

γmin
m2 in the deterministic knapsack setting for

m/2-multiwinner elections (or equivalently when ca = 2
m for all a ∈ A).

Proof. Recall the notation used in the proof of Theorem 12. For any subset of alternatives S ⊆ A, let
nS :=

∑
i∈N I(S ⊆ ρi) be the number of voters whose knapsack set contains S. We use shorthand na := n{a}

and na,b := n{a,b} for all a, b ∈ A. Then, informally, na,b is the number of voters who vote for both a and b.
The voting rule we will use is as follows: assign a plurality score to each alternative, where the score is

simply the number of times each alternative appears.
Pick the m/2 alternatives with the largest plurality score, A. Indeed, every alternative can appear at

most n times, as every voter can vote for them only once. Therefore, in the worst case, if the top m/2 − 1
alternatives appear n times there must remain nm/2 − n(m/2 − 1) = n appearances of other alternatives. By
the pigeonhole principle from here, the remaining plurality winner must be chosen n/(m/2 + 1) > n/m times.
Thus, the minimum number of times a plurality winner can appear is n/m.
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Moreover, because na > nb for all a ∈ A and b /∈ A, and
∑

a∈A na +
∑

b/∈A nb = mn/2, we get that
2
∑

a∈A na ⩾ mn/2 and so
∑

a∈A na ⩾ mn/4.

Then, let A∗ be the optimal set of alternatives. Note then that:

sw(A∗, U)
sw(A, U) =

∑
a∗∈A∗ sw(a∗, U)∑

a∈A sw(a, U)

=
∑

a∗∈A∗∩A sw(a∗, U)∑
a∈A sw(a, U) +

∑
a∗∈A∗\A sw(a∗, U)∑

a∈A sw(a, U)

⩽ 1 +
∑

a∗∈A∗\A

sw(a∗, U)∑
a∈A sw(a, U) . (3)

We will show that for all a∗ ∈ A∗ \ A, there exists some a ∈ A such that:

sw(a∗)
sw(a) ⩽ 21 − γmin

γmin
m + 1,

by considering two cases:

1. Suppose that for all a∗ ∈ A∗ \ A, there exists some a ∈ A such that na,a∗/na ⩽ 1/2. Then, na − na,a∗ ⩾
na/2 ⩾ n/2m. Therefore, by Lemma 1:

sw(a∗)
sw(a) ⩽ 21 − γmin

γmin
m + 1.

2. Suppose that for some a∗ ∈ A∗ \ A, and for all a ∈ A, na,a∗/na > 1/2. Let amax = arg maxa∈A na and
amin = arg mina∈A na. Then, in particular,

namax < 2namax,a∗ ⩽ 2na∗ ⩽ 2namin ,

where the last equality holds because amin is a plurality winner, and a∗ isn’t
Since (m/2)namax ⩾

∑
a∈A na ⩾ nm/4, namax ⩾ n/2 and so namin ⩾ n/4. Therefore, we can improve

the lower bound for plurality winners: for all a ∈ A, na ⩾ n/4.

By Lemma 6 below, we know that for all a∗ ∈ A∗ \ A, there exists some a ∈ A such that na,a∗/na ⩽
(m − 2)/m. Therefore, na − na,a∗ ⩾ 2na/m ⩾ n/2m. Thus, by Lemma 1 in [Flanigan et al., 2023]:

sw(a∗)
sw(a) ⩽ 21 − γmin

γmin
m + 1.

From here we can prove an m2 bound easily by taking a∗
max = argmaxa∗∈A∗sw(a∗, U). Then, continuing

off of (3), and using the fact that there exists some â ∈ A such that sw(a∗
max,U)

sw(â,U) ⩽ 2 1−γmin
γmin

m + 1:

sw(A∗, U)
sw(A, U) ⩽ 1 + m

2 · sw(a∗
max, U)∑

a∈A sw(a, U)

⩽ 1 + m

2 · sw(a∗
max, U)

sw(â, U)

⩽ 1 + 1 − γmin

γmin
m2 + m

2 ,

as claimed.
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Lemma 6. When A∗ is the optimal subset and A is the subset chosen by the repeated plurality rule, for all
a∗ ∈ A∗ \ A, there exists some a ∈ A such that:

N(a, a∗)
N(a) ⩽ (m − 2)/m.

Proof. Note that
∑

a∈A N(a, a∗) is the number of times a voter votes for some alternative and a∗. Each voter
can vote for at most m/2 alternatives. Since there are then at most m/2 − 1 alternatives in A that any voter
who votes for a∗ could have voted for:∑

a∈A

N(a, a∗) ⩽ N(a∗)(m/2 − 1) ⩽ N(a∗) · m − 2
2 .

From here, let amin = argmina∈AN(a, a∗). Then, substituting this into the inequality above, and using that
|A| = m

2 :
m

2 N(amin, a∗) ⩽ N(a∗) · m − 2
2 .

Since N(a∗) ⩽ N(amin) as a∗ is not in A and therefore must occur at most as many times as any plurality
winner,

m

2 N(amin, a∗) ⩽ N(amin) · m − 2
2 ,

and so finally
N(amin, a∗)

N(amin) ⩽
m − 2

m
,

as desired.

4.4 Threshold Approval Votes
Finally, we investigate the distortion under the ballot format of threshold approval votes. Under this ballot
format with threshold τ > 0 (τ -th), each voter i reports the subset of alternatives for which her PS-value is
at least a τ fraction of her total PS-value for all alternatives in A, i.e., ρi = {a ∈ A : vi(a) ⩾ τ ·

∑
b∈A vi(b)}.

Thus, Lτ -th = 2A, as with knapsack votes. Benadè et al. [2021] introduce this ballot format for unit-sum
utilities and our definition extends it to arbitrary utilities.3

It is easy to see that without a unit sum assumption, the distortion of any deterministic rule is unbounded,
even with public-spirited voters.

Proposition 3. The distortion associated with deterministic fixed thresholds (using the same definition as in
[Benadè et al., 2021]) is unbounded for any choice of threshold.

Proof. Suppose we use a threshold of t. Then, consider an input profile where no voter approves any alternative.
Suppose that f picks a∗ ∈ A. Then, consider a preference profile where ui(a∗) = 0 and ui(b) = t/2 for all
i ∈ N and all b ̸= a∗.

Then, vi(a∗) = (1 − γi) · 0 + γi · 0
n = 0 < t and vi(b) = (1 − γi) · t/2 + γi · nt/2

n = t/2 < t, meaning the
utility profile is consistent with the input, but the distortion is infinite.

Deterministic Rules

By setting τ = 1/m, we can achieve the following distortion upper bound.

3One could also conceive of using an absolute threshold (i.e., voter i asked to approve all a with vi(a) ⩾ τ), instead of making
it relative to the total value. But in Proposition 3, we show that this leads to the worst possible distortion: unbounded for
deterministic rules and m for randomized rules.
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Theorem 14 (upper bound). For threshold approval votes with threshold τ = 1/m, there exists a deterministic
rule f with distortion

dist(1/m)-th(f) ⩽ m
(
mγ−1

min − m + 1
)

.

Proof. We can use the voting rule that simply picks the plurality winner: the alternative with most approvals.
Let a be the plurality winner.

Let S∗ be the optimal feasible subset of alternatives. Then, if voter i approves alternative a:

vi(a)∑
b∈A vi(b) ⩾ 1/m,

and so:
mvi(a) ⩾ vi(A).

Notice that every voter must approve at least one alternative, as at least one alternative must have value
at least the average:

∑
a∈A

vi(a)
m . Therefore, by the pigeonhole principle, the plurality winner must appear at

least n/m times, and so mvi(a) ⩾ vi(A) for at least n/m voters i.
By Lemma 1,

sw(A)
sw(a) ⩽ m

(
1 − γmin

γmin
m + 1

)
.

as claimed.

As with rankings by value, it turns out that linear distortion is unavoidable, even when voters exhibit
perfect public spirit and submit the same vote.

Theorem 15 (lower bound). For all deterministic f and all threshold values τ > 0,

distτ-th(f) ⩾ m − 1.

Proof. Let t > 0 be the threshold.
Consider the case where alternative a costs 1, and alternatives b1, . . . , bm−1 cost 1

m−1 .
Suppose all voters approve only a. Then, we have two cases. If the voting rule f doesn’t pick alternative

a, then we incur infinite distortion when the utility of a is 1, and the utility of b1, . . . , bm−1 is 0 for all voters.
If f does pick a, then it cannot pick anything else as the budget is exhausted. Let the utility of a be t + ϵ

and the utility of bj be t − ϵ for all voters, and any small ϵ > 0.
Then, we could have gotten a utility of (m − 1) (t − ϵ), but instead get t + ϵ. As ϵ → 0, the distortion

goes to m − 1.

Randomized Rules

Turning to randomized rules for threshold approval votes with threshold τ , we get the same results under
public-spirited behavior with arbitrary utilities as Benadè et al. [2021] get under the unit-sum assumption.

Theorem 16 (lower bound). For threshold approval votes with any threshold τ > 0, every randomized rule f
has distortion

distτ-th(f) ⩾ 1
2

(⌊√
m

2

⌋
+ 1
)

.

Proof. We are borrowing the construction from Theorem 3.4 in Benadè et al. [2021]. Consider the case
where each alternative has cost 1. We consider two cases. First suppose that τ ⩽ 1/ ⌊

√
m⌋. Fix a set S of

⌊
√

m/2⌋ + 1 alternatives. Construct the input profile ρ⃗ where ρi = S for all i ∈ N . There must exist a∗ ∈ S
where Pr[a∗] ⩽ 1/|S|. Consider the utility matrix U where for all i ∈ N , ui(a∗) = 1/2 and for a ∈ S \ {a∗},
ui(a) = 2/ ⌊

√
m/2⌋ and ui(a) = 0 for a ∈ A \ S. Note that since voters have identical utilities, we have
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ui(a) = vi(a) for any alternative a ∈ A. We have sw(a∗) = n/2 and for a ∈ A \ {a∗}, sw(a) ⩽ n/
√

m. That
gives us

distτ -th(f) ⩾ sw(a∗)
Ea∼f(ρ⃗,c)[sw(a)]

⩾
n
2

1
⌊√

m/2⌋+1
n
2 + ⌊√

m/2⌋
⌊√

m/2⌋+1
n√
m

⩾ 1
⌊√

m/2⌋+1
+ 1

⌊√
m/2⌋+1

⩾
1
2

(⌊√
m

2

⌋
+ 1
)

.

On the other hand if τ > 1/ ⌊
√

m⌋, construct the input profile ρ⃗ where ρi = ∅ for i ∈ N . In this case there exists
a∗ ∈ A where Pr[a∗] ⩽ 1/m. Consider the utility matrix U where for every voter ui(a∗) = 1/ ⌊

√
m⌋ and for

a ∈ A\{a∗}, ui(a) = (1−1/ ⌊
√

m⌋)/(m−1). We have sw(a∗) = n/ ⌊
√

m⌋, and sw(a) = n(1−1/ ⌊
√

m⌋)/(m−1)
for a ∈ A \ {a∗}. That gives us:

distτ -th(f) ⩾ sw(a∗)
Ea∼f(ρ⃗,c)[sw(a)]

⩾

n

⌊√
m⌋

1
m

n

⌊√
m⌋ + m−1

m

n

(
1− 1

⌊√
m⌋

)
m−1

⩾
m

⌊
√

m⌋
⩾
⌊√

m
⌋

,

which gives us the desired bound.

Benadè et al. [2021] consider an additional source of randomness, whereby the designer samples a threshold
τ from a distribution R over support [0, 1], and then all voters are asked to submit their threshold approval
votes using this value of τ (same for all voters). We refer to this ballot format as randomized threshold
approval votes with threshold distribution D (D-rth). Note that LD-rth = Lτ -th = 2A. Since randomness is
already introduced, it makes sense to also allow the aggregation rule f to be randomized in this case. When
defining the distortion of a randomized rule f , we take expectation over the sampling of threshold τ (before
taking any worst case).

Theorem 17 (lower bound). For randomized threshold approval votes with the threshold sampled from any
distribution D, every randomized rule f has distortion

distD-rth(f) ⩾ 1
2

⌈
log2(m)

log2(2 ⌈log2(m)⌉)

⌉
.

Proof. We are borrowing the construction directly from Theorem 3.6 in Benadè et al. [2021]. Consider the
case where ca = 1 for all a ∈ A, and let f be an arbitrary rule that both returns a threshold and a set of
alternatives randomly.

Split up the (1/m, 1] interval into ⌈log2(m)/ log2(2 log2(m))⌉ parts Ij defined such that

Ij =
(

(2 log2(m))j−1

m
, min

{
(2 log2(m))j

m
, 1
}]

.

Define uj and ℓj to be the largest and smallest points in Ij respectively. By construction, uj ⩽ 2 log2(m)ℓj

for all j.
The key idea is to give utilities to alternatives within the interval that the threshold with least probability

is contained in, so that with high probability, the alternatives are either all approved or all disapproved.
Indeed, let k be a value such that

Pr(t ∈ Ik) ⩽ ⌈log2(m)/ log2(2 log2(m))⌉−1
,
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which must exist by the pigeonhole principle.
Fix a subset S ⊆ A of size ⌈log2(m)⌉, and let V = uk/2 + (⌈log2(m)⌉ − 1)ℓk.
We will give each voter the same utilities, so that u(a) := ui(a) = vi(a) for all i ∈ N, a ∈ A. For all a ∈ S,

assign utilities so that
∑

a∈S u(a) = V , for all a /∈ S, let u(a) = (1 − V )/(m − ⌈log2(m)⌉).
We can verify that ℓk ⩽ 1

2 log2(m) uk for all k. We can then see that the utilities sum to one, and are all
positive as:

V = uk

2 + (⌈log2(m)⌉ − 1)ℓk ⩽
1
2 + ⌈log2(m)⌉ − 1

2 log2(m) ⩽ 1.

We construct this so that all alternatives in S have utilities contained in Ik. Thus, when t /∈ Ik, all voters
either approve S or disapprove S. Therefore, there must exist some a∗ ∈ S such that

Pr(a∗is returned | t /∈ Ik) ⩽ 1/ ⌈log2(m)⌉ .

Now, we can assign u(a∗) = uk/2 and u(a) = ℓk for a ∈ S \{a∗}. Then, the optimal choice is a∗ with social
welfare nuk/2, but instead, since ℓk > (1 − V )/(m − log2(m)), we pick with high probability an alternative
with at most nℓk utility.

Indeed, the expected social welfare of f is:

Pr(t ∈ Ik) · nuk

2 + Pr(t /∈ Ik)
(

1
⌈log2(m)⌉ · nuk

2 + ⌈log2(m)⌉ − 1
⌈log2(m)⌉ · nℓk

)
⩽

(
⌈log2(m)/ log2(2 log2(m))⌉−1 + 1

⌈log2(m)⌉ + ⌈log2(m)⌉ − 1
⌈log2(m)⌉ · 1

log2(m)

)
nuk

2

⩽
(

⌈log2(m)/ log2(2 log2(m))⌉−1
)

nuk.

The maximum social welfare that we can get is nuk/2, so the distortion is:

distD-rth(f) ⩾
nuk

2

nuk

⌈
log2(m)

log2(2 log2(m))

⌉−1 = 1
2

⌈
log2(m)

log2(2 ⌈log2(m)⌉)

⌉
.

Theorems 16 and 17 are corollaries of Theorems 3.4 and 3.6 of Benadè et al. [2021], respectively. Their
lower bound, derived under the unit-sum assumption, carries over to our more general setup. While they do
not allow public-spirited behavior, in their construction the utility of each alternative is the same across all
voters, ensuring that any level of public-spirited behavior does not affect their construction. The only reason
we provide full proofs is that Benadè et al. [2021] derive only an asymptotic lower bound by making several
simplifying assumptions, which we carefully remove to derive an exact lower bound.

5 PB with Ranking of Predefined Bundles
We have shown that for all commonly-studied PB ballot formats, all deterministic rules incur Ω(m) distortion —
an issue in the practical case where m is large. This motivates our study of a novel ballot format, ranking of
predefined bundles (rank-b(P)). In Sections 5.1-5.3, we will explore various ways to use rank-b(P) ballots,
which differ in how P is chosen. For intuition, note that the lowest-distortion choice of P is simply F ; then,
we are effectively in the single-winner setting and Copeland guarantees constant (in m) distortion. However,
this choice of P comes at a steep elicitation cost, requiring voters to rank exponentially many bundles.

Our refined goal, therefore, is to design P to permit low distortion while containing at most polynomial
(or pseudopolynomial) bundles. After designing and analyzing various such choices of P, in Section 6 we
explore the practicality of the resulting elictation protocols.

5.1 Sublinear Distortion
We first propose rank-b with high-low bundles (P = HLB), which we show permits sublinear distortion.
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High-low bundles (HLB): Let L = {a ∈ A : c(a) ⩽ 1/⌈√
m⌉} be the set of low-cost alternatives and

H = A \ L be the set of high-cost alternatives. The high-low bundling rule (HLB) partitions L into at most
⌈
√

m⌉ feasible bundles,4 and H into an arbitrary partition of feasible bundles. Then it defines P to be the
union of these partitions.

The rank-b(HLB) ballot asks voters to rank |P| ⩽ |H| + |L| = m bundles (and in fact, |P| ⩽ m − |L| ·
(1 − 1/ ⌈

√
m⌉), so if there are many low-cost projects, |P| ≪ m). Finally, in Theorem 18 we show that

if Copeland rule is applied to the voting profile elicited via rank-b(HLB) on P, the rank-b ballot format
dominates all the previous ballot formats by a factor of O(

√
m).

The main idea of our proof is that if A∗ is the optimal bundle, then either sw(L ∩ A∗) or sw(H ∩ A∗) must
have welfare at least sw(A∗)/2. Then, there must be a bundle in P with welfare at least (1/⌈√

m⌉) · sw(L ∩ A∗)
because L was partitioned into at most ⌈

√
m⌉ bundles, and also one with welfare at least (1/⌈√

m⌉) · sw(H ∩A∗)
because |H ∩ A∗| ⩽ ⌈

√
m⌉.

Theorem 18. distrank-b(HLB)(Copeland) = O(
√

m/γ2
min).

Proof. Let A∗ be an optimal budget-feasible set of alternatives. Clearly, sw(A∗) = sw(L ∩ A∗) + sw(H ∩ A∗),
implying that at least one of sw(L ∩ A∗) ⩾ 1

2 sw(A∗) and sw(H ∩ A∗) ⩾ 1
2 sw(A∗) must be true. In both cases,

we claim that there exists a bundle P ∗ ∈ P for which sw(P ∗) ⩾ sw(A∗)
2⌈√

m⌉ .
Suppose sw(L ∩ A∗) ⩾ 1

2 sw(A∗). Since L is partitioned into at most ⌈
√

m⌉ bundles in P, there exists
P ∗ ∈ P such that sw(P ∗) ⩾ sw(L)

⌈√
m⌉ ⩾ sw(L∩A∗)

⌈√
m⌉ ⩾ sw(A∗)

2⌈√
m⌉ .

Next, suppose sw(H ∩ A∗) ⩾ 1
2 sw(A∗). Since each alternative in H ∩ A∗ has cost more than 1

⌈√
m⌉ and lies

in the budget-feasible set A∗, we have that |H ∩ A∗| ⩽ ⌈
√

m⌉. Thus, there exists an alternative a∗ ∈ H ∩ A∗

with sw(a∗) ⩾ sw(H∩A∗)
⌈√

m⌉ ⩾ sw(A∗)
2⌈√

m⌉ . Hence, for the bundle P ∗ ∈ P containing a∗, we have sw(P ∗) ⩾ sw(A∗)
2⌈√

m⌉ .
Finally, if Copeland applied to the rank-b(HLB) ballots picks bundle P , using its distortion bound, we

have
sw(P ) ⩾ γ2

min · sw(P ∗) ⩾ γ2
min · sw(A∗)

2 ⌈
√

m⌉
,

yielding distortion at most 2⌈√
m⌉

γ2
min

= O(
√

m/γ2
min), as needed.

While this is already a significant improvement on previous results, there is room for more: crafting
predefined bundles with no information about (and thus no regard for) voters’ preferences can be both
theoretically lossy and practically unappealing. Thus, we next explore: what distortion is possible when our
bundling rule has some knowledge of voters’ preferences? We explore this question in Sections 5.2 and 5.3 by
defining a two-round elicitation protocol: in Round 1, we elicit voter preferences using the canonical rank
ballot format; then, in Round 2, we use this preference information to craft P and deploy ballot rank-b(P).
We denote this two-round ballot format as rank → rank-b(P).

5.2 Logarithmic Distortion in Two Rounds
We now propose rank-b with tiered-cost bundles (P = TCB). At a high level, TCB partitions alternatives
into O(log m) tiers by cost, and then uses Iterative Copeland to select a feasible bundle of m/2ℓ alternatives
from the tier containing alternatives with costs between 2ℓ−1

/m and 2ℓ
/m.

Tiered-cost bundles (TCB): Set L = ⌈log2 m⌉. For each ℓ ∈ [L], define the tier Tℓ such that

Tℓ = {a ∈ A : 2ℓ−1
/m < c(a) ⩽ 2ℓ

/m} for all ℓ > 0;

4This is possible because |L| ⩽ m and any subset of
⌈√

m
⌉

alternatives from L is feasible.
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let T0 = {a ∈ A : c(a) ⩽ 1/m}. Then, use Iterative Copeland to pick a bundle Pℓ ⊆ Tℓ of size tℓ =
⌊min(|Tℓ|, max(1, m/2ℓ))⌋. Since c(a) ⩽ 2ℓ

/m for each a ∈ Tℓ, Pℓ is budget-feasible. Set P = {P0, P1, . . . , PL}.
Then, TCB asks voters to rank L ⩽ 1 + ⌈log2 m⌉ bundles.

After asking voters to rank a total of at most m + 1 + ⌈log2 m⌉ objects over both rounds, aggregating via
Copeland achieves distortion O(log(m)/γ4

min).
The key insight is that for the optimal bundle A∗, sw(A∗) =

∑
ℓ sw(A∗ ∩Tℓ), so the best of the 1+⌈log2 m⌉

feasible bundles in the sum (call it A∗ ∩ Tℓ′) must be an O(log m) approximation of A∗. Then, the welfare of
the best tℓ-sized subset P ∗

ℓ ⊆ Tℓ′ 2-approximates that of A∗ ∩ Tℓ′ ; Pℓ constant-approximates the welfare of
P ∗

ℓ (by the distortion of Iterative Copeland); and the chosen bundle constant-approximates the welfare of Pℓ

(by the distortion of the final Copeland aggregation).

Theorem 19. distrank→rank-b(TCB)(Copeland) = O(log(m)/γ4
min).

Proof. Let A∗ be an optimal budget-feasible set of the alternatives. Choose ℓ ∈ {0, 1, . . . , L} with the highest
sw(A∗ ∩ Tℓ); note that, by the pigeonhole principle, sw(A∗ ∩ Tℓ) ⩾ sw(A∗)

1+L .
Let P ∗

ℓ be the optimal tℓ-sized subset of Tℓ; note that this is feasible due to the definition of tℓ. Further,
since A∗ ∩ Tℓ is feasible, we have |A∗ ∩ Tℓ| ⩽ 2tℓ. Hence, A∗ ∩ Tℓ can be partitioned into two tℓ-sized subsets
of Tℓ, the better of which must be a 2-approximation of A∗ ∩ Tℓ. Since P ∗

ℓ is the best tℓ-sized subset of Tℓ,
we have sw(P ∗

ℓ ) ⩾ 1
2 sw(A∗ ∩ Tℓ).

Next, because we pick Pℓ ⊆ Tℓ of size tℓ using the iterated Copeland rule, given its distortion bound of
(2γ−1

min − 1)2 from Lemma 4, and the the distortion of Copeland given in Theorem 3.3 of Flanigan et al. [2023],
we have

sw(Pℓ) ⩾
sw(P ∗

ℓ )
(2γ−1

min − 1)2 ⩾
sw(A∗ ∩ Tℓ)

2 · (2γ−1
min − 1)2 ⩾

sw(A∗)
2 · (1 + L) · (2γ−1

min − 1)2 .

Finally, since we pick a bundle P ∈ P using Copeland’s rule, using its distortion bound again, we have

sw(P ) ⩾ sw(Pℓ)
(2γ−1

min − 1)2 ⩾
sw(A∗)

2 · (1 + L) · (2γ−1
min − 1)4 ,

yielding a distortion of at most 2 · (1 + L) · (2γ−1
min − 1)4 = O(log m/γ4

min).

5.3 Constant Distortion in Two Rounds
Finally, we propose rank-b with exhaustive bundles (P = EB). EB uses the same tiers as TCB, but instead of
having each bundle consist of alternatives from the same tier, it crafts bundles by using Iterative Copeland to
choose a subset Sℓ ⊆ Tℓ of size tℓ from every tier and putting them together as ∪ℓSℓ. Ideally, we want to
explore every possible combination of values of t0, . . . , t⌈log2 m⌉, so long as the resulting bundle is feasible, but
a slight optimization is achieved by only choosing values that are powers of 2.

Exhaustive bundles (EB): Let L = ⌈log2 m⌉ and define tiers T0, T1, . . . , TL as in TCB. Fix R =
⌊log2 m⌋. For each ℓ ∈ [L] and r ∈ {0, 20, 21, . . . , 2R} such that |Tℓ| ⩾ r, choose Pℓ,r ⊆ Tℓ of size r
using Iterative Copeland applied to the rank ballots from Round 1 (if p = 0, simply choose ∅). Call a
sequence t⃗ = (t0, t1, . . . , tL) valid if tℓ ∈ {0, 20, 21, . . . , 2R} for each ℓ ∈ [L], and for such a sequence define
Pt⃗ = ∪L

ℓ=0Pℓ,tℓ
. In other words, in a valid sequence, the ℓ-th element represents the number of alternatives

that are selected from Tℓ, and with this definition each valid sequence leads to a potential bundle. Finally, let
P = {Pt⃗ : t⃗ is valid ∧ Pt⃗ ∈ F}, so all bundles in P are feasible. Note that |P| is at most the number of valid
sequences, which is (1 + R)1+L = O((log m)O(log m)) = O(mO(log log m)).5

In exchange for asking voters to rank quasipolynomially many objects across two rounds, using Copeland to
aggregate, we achieve constant distortion! The key idea is to let A∗ be an optimal bundle. Then, consider the
sequence t⃗, where tℓ = 2⌊log2 |A∗∩Tℓ|⌋−1 for each ℓ ∈ {0, 1, . . . , L}. Since tℓ ⩽ |A∗ ∩ Tℓ|/2, c(Pℓ,tℓ

) ⩽ c(A∗ ∩ Tℓ),
5Although this is many bundles, they are similar, potentially decreasing cognitive load of ranking them: they consist of

combinations of at most (1 + R) · (1 + L) = O(m) many bundles Pℓ,r.
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Pt⃗ must be feasible. We then show that its welfare constant-approximates that of A∗. The only remaining
issue is that when |A∗ ∩ Tℓ| = 1, we cannot set tℓ = 2⌊log2 |A∗∩Tℓ|⌋−1. This is addressed by taking two cases,
depending on whether much of the welfare of A∗ is contributed by those A∗ ∩ Tℓ that have size 1 or those
that have size at least 2.

Theorem 20. distrank→rank-b(EB)(Copeland) = O(1/γ4
min).

Proof. Let A∗ be an optimal budget-feasible set of the alternatives. Let U∗ = ∪ℓ∈{0,1,...,L}:|A∗∩Tℓ|=1(A∗ ∩ Tℓ)
be the set of alternatives in A∗ such that there is no other alternative in A∗ from their tier. First, we show
that there exists a bundle P ∗ ∈ P such that sw(P ∗) ⩾ 1

9γ2
min

· sw(A∗). We do so by splitting into two cases:

Case 1: sw(U∗) < 1
3 sw(A∗). Here, we seek a bundle in P that provides a good approximation to

B∗ = A∗ \ U∗ because sw(B∗) ⩾ 2
3 sw(A∗). We consider two sub-cases:

Case 1a: sw(B∗ ∩ T0) ⩾ 2
9 sw(A∗). In this case, consider P0,r for the greatest feasible r, and note that

r ⩾ |T0|/2. The best r-sized subset of T0 is 1/2-approximation of T0, so, by the distortion of iterated Copeland,

sw(P0,r) ⩾ sw(T0)
2 · (2γ−1

min − 1)2 ⩾
sw(B∗ ∩ T0)

2 · (2γ−1
min − 1)2 ⩾

sw(A∗)
9 · (2γ−1

min − 1)2 .

Case 1b: sw(B∗ ∩ T0) < 2
9 sw(A∗). Hence, sw(B∗ ∩∪ℓ∈[L]Tℓ) = sw(B∗)− sw(B∗ ∩T0) ⩾ 4

9 sw(A∗). Define
t0 = 0, and for each ℓ ∈ [L], define

tℓ =
{

0, if |A∗ ∩ Tℓ| = 1,

2⌊log2 |A∗∩Tℓ|⌋−1, if |A∗ ∩ Tℓ| ⩾ 2.

First, note that t⃗ is a valid sequence. Next, we prove that Pt⃗ = ∪L
ℓ=0Pℓ,tℓ

is feasible. Note that t0 = 0, so
P0,t0 = ∅. For each ℓ ∈ [L], |Pℓ,tℓ

| = tℓ ⩽
|A∗∩Tℓ|

2 . Since alternatives in Tℓ differ from each other in cost by a
factor of at most 2, this implies c(Pℓ,tℓ

) ⩽ c(A∗ ∩ Tℓ). Hence, c(Pt⃗) ⩽
∑T

ℓ=1 c(A∗ ∩ Tℓ) ⩽ c(A∗) ⩽ 1; hence,
Pt⃗ ∈ P.

Finally, for each ℓ ∈ [L] such that |A∗ ∩ Tℓ| ⩾ 2, note that tℓ ⩾ 1
4 |A∗ ∩ Tℓ|; hence, the best tℓ-sized subset

of Tℓ is a (1/4)-approximation of A∗ ∩ Tℓ, and applying the distortion guarantee of iterated Copeland, we have

sw(Pℓ,tℓ
) ⩾ sw(A∗ ∩ Tℓ)

4 · (2γ−1
min − 1)2 .

Summing over ℓ ∈ [L] such that |A∗ ∩ Tℓ| ⩾ 2, we have

sw(Pt⃗) ⩾
sw(B∗ ∩ ∪ℓ∈[L]Tℓ)

4 · (2γ−1
min − 1)2 ⩾

sw(A∗)
9 · (2γ−1

min − 1)2 .

Case 2: sw(U∗) ⩾ 1
3 sw(A∗). In this case, we seek a bundle in P that provides a good approximation of

U∗. To do this, we consider three bundles, and prove that at least one of which must be a sufficiently good
approximation.

Case 2a: sw(U∗ ∩ TL) ⩾ 1
3 sw(U∗). Then, since |U∗ ∩ TL| = 1, we can take PL,1, which also has size

|PL,1| = 1. Further, by the distortion guarantee of iterated Copeland, we have

sw(PL,1) ⩾ sw(U∗ ∩ TL)
(2γ−1

min − 1)2 ⩾
sw(A∗)

9 · (2γ−1
min − 1)2 .
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Case 2b: sw(U∗ ∩ TL−1) ⩾ 1
3 sw(U∗). Similarly, since |U∗ ∩ TL−1| = 1, we can take PL−1,1, netting

sw(PL−1,1) ⩾ sw(U∗ ∩ TL−1)
(2γ−1

min − 1)2 ⩾
sw(A∗)

9 · (2γ−1
min − 1)2 .

Case 2c: sw(U∗ \ (TL ∪ TL−1)) ⩾ 2
3 sw(U∗). Hence, sw(U∗ ∩ (∪L−2

ℓ=0 Tℓ)) ⩾ 1
3 sw(U∗). Take t⃗ where tℓ = 1

for each ℓ ∈ {0, 1, . . . , L − 2} and tL = 0. Note that this is a valid sequence. Further, c(Pt⃗) ⩽
∑L−2

ℓ=0
2ℓ

m =
2L−1−1

m ⩽ 1. By the distortion of iterated Copeland, we have

sw(Pt⃗) ⩾
sw(U∗ ∩ ∪L−1

ℓ=0 Tℓ)
(2γ−1

min − 1)2 ⩾
sw(A∗)

9 · (2γ−1
min − 1)2 .

Finally, applying the distortion bound of the final Copeland aggregation, the bundle P picked must satisfy

sw(P ) ⩾ sw(P ∗)
(2γ−1

min − 1)2 ⩾
sw(A∗)

9 · (2γ−1
min − 1)4 ,

which implies a distortion of O(1/γ4
min), as desired.

6 Discussion
On the practicality of rank-b ballots. We propose that our ranking of predefined bundles ballot format
has three main practical advantages in addition to low distortion. (1) It is fully ordinal in contrast to, e.g.,
threshold approval votes [Benadè et al., 2021], which ask voters to compare projects via precise numeric
utility values. (2) Comparing entire feasible bundles may provide voters more context about cost trade-offs
than ballots where they compare individual projects. (3) The aggregation rules we study always select a
bundle that is on the ballot, allowing every vote favorably ranking the winning bundle to be interpreted as a
direct endorsement of the final outcome.

While one may worry that doing two rounds of elicitation is impracticable, PB participants often meet
several times, so doing so is likely feasible. In fact, the flexibility in the PB process may permit a variety
multi-round protocols with even more favorable trade-offs. A second potential worry is that low-distortion
rank-b ballots may ask voters to rank too many bundles. We now show that in 1244 real PB elections from
https://pabulib.org (with some randomized imputation of incomplete preferences), even our rank → rank-b(EB)
ballot (with some minor heuristic tweaks that maintain constant distortion) typically requires voters to rank
far less than m bundles. Details on data and implementation, plus some supplemental results, are found in
Appendix E.
Future directions. rank-b ballots represent an exciting future direction in PB: there is an expansive design
space of bundles and multi-round protocols that can potentially drive down query complexity, guarantee
low distortion, satisfy desirable axioms, and be well-received in real-world experiments. Beyond rank-b
ballots, there are many questions remaining about what public spirit looks like in real democratic contexts,
and how this can be incorporated into social choice theory. For instance: (1) In what other social choice
contexts — such as matching [Filos-Ratsikas et al., 2014] and fair division [Halpern and Shah, 2021] — is public
spirit a reasonable assumption?, (2) Can we measure the degree and nature of public spirit resulting from
different democratic processes, deliberative or otherwise?, and (3) If voters account for a welfare notion other
than utilitarian social welfare (or likewise, we care about other objectives like Nash welfare or proportional
fairness [Ebadian et al., 2022]), can one prove similar guarantees?
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A Constructions of the Lower Bounds in Section 3
A.1 Proof of Theorem 2
Theorem 2. Every deterministic rule f has distortion

distrank(f) ∈ Ω (m/γmin) .

Proof. Consider an instance with A = {a, b1, . . . bm−1}, where a costs 1 and every other alternative costs
1/(m − 1). Define p = 1−γmin

1−γmin+m2 . Let N1 be a set of n(1 − p) voters and N2 = N \ N1. Suppose that
members of N1 submit ranking (a ≻ b1 ≻ . . . ≻ bm−1) and members of N2 vote (b1 ≻ . . . ≻ bm−1 ≻ a).

Now consider two cases.

Case 1: If the aggregation rule selects a, consider utility matrix U where members of N1 have utility
of γminp

1−pγmin
for a and 0 for the rest, while members of N2 have utility of 0 for a and 1 for the rest of the

alternatives. This means sw(a) = n(1 − p) γminp
1−γminp , and sw(b) = np for b ∈ A \ {a}. Alongside with the

PS-vector γ⃗ = [γmin]n we have value matrix Vγ⃗,U first of all we have to make sure that this is consistent with
the input profile. For i ∈ N1,

vi(a) = (1 − γmin) γminp

1 − γminp
+ γmin(1 − p) γminp

1 − γminp

= (1 − γminp) γminp

1 − γminp
= γminp,

and vi(bj) = (1 − γmin) · 0 + γminp = γmin · p. Therefore, the value matrix is consistent with the ranking of the
members of N1. On the other hand for i ∈ N2 we have, vi(a) = γmin(1−p) γminp

1−γminp , and vi(bj) = 1−γmin+γminp,

where for p = 1−γmin
1−γmin+m2 we have:

vi(a) = γ2
minm2 (1 − γmin)

(m2 + 1 − γmin) (m2 + (1 − γmin)2) ,

vi(bj) = (m2 + 1)(1 − γmin)
m2 + 1 − γmin

.

This gives us:

vi(a)
vi(bj) = γ2

minm2

(m2 + 1) (m2 + (1 − γmin)2) ⩽ 1

=⇒ vi(bj) ⩾ vi(a),

and therefore the votes of voters in N2 are consistent with the value matrix Vγ⃗,U .
By picking budget-feasible set {b1, . . . , bm−1} we can get a social welfare of n(m − 1)p, while instead we

got n(1 − p) γminp
1−pγmin

by choosing a. This leaves us with a distortion of

(m − 1)(1 − pγmin)
(1 − p)γmin

.

Since p ⩾ 0 and γmin ⩽ 1, we know p ⩾ pγmin, and so 1 − pγmin ⩾ 1 − p. Therefore, we get the desired
distortion:

(m − 1)(1 − pγmin)
(1 − p)γmin

⩾
m − 1
γmin

.
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Case 2: If the aggregation rule does not select a, consider the utility matrix U where members of N1
have utility of 1 for a and 0 for the rest, while members of N2 have utility of 0 for a and γmin(1−p)

1−γmin(1−p) for
the rest of the alternatives. This gives us sw(a) = n(1 − p), and sw(b) = np γmin(1−p)

1−γmin(1−p) for b ∈ A \ {a}.
Again we have to check that the value matrix Vγ⃗,U is consistent with the input profile. For i ∈ N1 we have:
vi(a) = 1 − γmin + γmin(1 − p) = 1 − γminp, and vi(bj) = γminp γmin(1−p)

1−γmin(1−p) .
The value matrix is consistent with the ranking of the members of N1, i.e. vi(a) ⩾ vi(bj), as:

γmin ⩽ 1 =⇒ 0 ⩽ γminp ⩽ 1 − γmin(1 − p)

=⇒ γminp
1

1 − γmin(1 − p) ⩽ 1

=⇒ γminp
γmin(1 − p)

1 − γmin(1 − p) ⩽ 1 − γminp.

Moreover, for i ∈ N2 we have: vi(a) = γmin(1 − p), and

vi(bj) = (1 − γmin) γmin(1 − p)
1 − γmin(1 − p) + γminp

γmin(1 − p)
1 − γmin(1 − p)

= (1 − γmin(1 − p)) γmin(1 − p)
1 − γmin(1 − p) = γmin(1 − p).

So we have vi(a) = vi(bj) which means that the value matrix is consistent with the ranking of the members
of N2 as well.

Since a is not picked by the aggregation rule, we get a maximum social welfare of (m − 1)np γmin(1−p)
1−γmin(1−p)

when we could have gotten a social welfare of np from a, meaning a distortion of:

distrank(f) ⩾ 1 − γmin(1 − p)
γminp(m − 1) ⩾

m − 1
γmin

.

All the conditions above hold for m ⩾ 2, so we have a distortions of at least: m−1
γmin

.

A.2 Proof of Theorem 3
Theorem 3. For all deterministic single-winner rules f ,

distsingle-win
rank (f) ∈ Ω(min{m/γmin, 1/γ2

min}).

Proof. Suppose we have m alternatives a1, . . . , am and n voters each with the same PS-value of γ = γmin. For
ease of exposition, let n be divisible by m. Our construction consists of m types of voters, equally distributed
with n/m voters of each type. Let Nk be the set of voters of type k. Suppose each voter type votes as follows,

N1 : a1 ≻ a2 ≻ . . . ≻ am−1 ≻ am

N2 : a2 ≻ a3 ≻ . . . ≻ am ≻ a1
...

Nm−1 : am−1 ≻ am ≻ . . . ≻ am−3 ≻ am−2
Nm : am ≻ a1 ≻ . . . ≻ am−2 ≻ am−1

so that Ni prefers alternative ai most, and cycles through the rest.
Without the loss of generality, suppose the voting rule picks a1. We will set the utilities so that

sw(am) > sw(am−1) > · · · > sw(a2) > sw(a1). To do so, set for all voters i,

ui(am) =


1 if i ∈ Nm

0 if i ∈ N1

ui(a1) otherwise
.
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For all k from 1 to m − 1 and for all i ∈ N1,

ui(ak) = γ

1 − γ

(
sw(am) − sw(ak)

n

)
,

and for all j from 2 to m, for all i ∈ Nj , for k from 1 to m − 1, when k < j − 1:

ui(ak) = γ

1 − γ

(
sw(aj−1) − sw(ak)

n

)
,

and when k ⩾ j:
ui(ak) = γ

1 − γ

(
sw(am) − sw(ak)

n
+ sw(aj−1) − sw(a1)

n

)
,

and ui(aj−1) = 0.
Then, for k from 1 to m − 1,

sw(ak) =
m∑

j=1

∑
i∈Nj

ui(ak)

= γ

1 − γ
· 1

n

( ∑
i∈N1

(
sw(am) − sw(ak)

)
+

k∑
j=2

∑
i∈Nj

(
sw(am) − sw(ak) + sw(aj−1) − sw(a1)

)
+ 0

+
m∑

j=k+2

∑
i∈Nj

(
sw(aj−1) − sw(ak)

))

= γ

1 − γ
· 1

n
· n

m

(k − 1)(sw(am) − sw(a1)) − (m − 1)sw(ak) +
m∑

j=1,j ̸=k

sw(aj)


= γ

1 − γ
· 1

m

(k − 1)(sw(am) − sw(a1)) − m · sw(ak) +
m∑

j=1
sw(aj)

 .

Let S =
∑m

j=1 sw(aj). Adding γ
1−γ sw(ak) to both sides of the above and rearranging, we get:

sw(ak) = γ

m
((k − 1)(sw(am) − sw(a1)) + S) .

In particular, sw(a1) = γ
m S, so

sw(ak) = γ

m

(
(k − 1)sw(am) + S · m − (k − 1)γ

m

)
.
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Via the same reasoning,

sw(am) =
m∑

j=1

∑
i∈Nj

ui(am)

= γ

1 − γ
· 1

n

(m−1∑
j=2

∑
i∈Nj

(
sw(aj−1) − sw(a1)

))
+ n

m

= γ

1 − γ
· 1

m

(m−1∑
j=2

(
sw(aj−1) − sw(a1)

))
+ n

m

= γ

1 − γ
· 1

m

(
S − (m − 2)sw(a1) − sw(am) − sw(am−1)

)
+ n

m

= γ

1 − γ
· 1

m

(
S − γ(m − 2)

m
S − sw(am) − γ

m

(
(m − 2)sw(am) + S · m − (m − 2)γ

m

))
+ n

m

= γ

1 − γ
· 1

m

(
m − (m − 2)γ

m
· m − γ

m
S − m + γ(m − 2)

m
sw(am)

)
+ n

m

= γ

1 − γ
· 1

m

(
m − (m − 2)γ

m
· m − γ

m
S

)
+ n

m
− γ(m + γ(m − 2))

(1 − γ)m2 sw(am).

Adding γ(m+γ(m−2))
(1−γ)m2 sw(am) to both sides and rearranging:

sw(am) = (1 − γ)m2

(1 − γ)m2 + γ(m + γ(m − 2))

(
γ

1 − γ
· 1

m

(
m − (m − 2)γ

m
· m − γ

m
S

)
+ n

m

)
= γm

(1 − γ)m2 + γ(m + γ(m − 2))

(
m − (m − 2)γ

m
· m − γ

m
S

)
+ (1 − γ)mn

(1 − γ)m2 + γ(m + γ(m − 2))

= γ(m − (m − 2)γ)
(1 − γ)m2 + γ(m + γ(m − 2)) · m − γ

m
S + (1 − γ)nm

(1 − γ)m2 + γ(m + γ(m − 2)) .

Now, we can finally solve for S:

S =
m∑

k=1
sw(ak)

= sw(am) + γ

m

m−1∑
k=1

(
(k − 1)sw(am) + S

m − (k − 1)γ
m

)

= sw(am) + γ(m − 1)(m − 2)
2m

sw(am) + γ

m2 S
m−1∑
k=1

(m − (k − 1)γ)

= 2m + γ(m − 1)(m − 2)
2m

sw(am) + γ

m2 S · (m − 1)(2γ + m(2 − γ))
2

= 2m + γ(m − 1)(m − 2)
2m

(
γ(m − (m − 2)γ)

(1 − γ)m2 + γ(m + γ(m − 2)) · m − γ

m
S + (1 − γ)nm

(1 − γ)m2 + γ(m + γ(m − 2))

)
+ S · γ(m − 1)(2γ + m(2 − γ))

2m2 .

After simplifying this, we get:

S = n
2γ + γm2 + (2 − 3γ)m

2(1 − γ)m2 + 2γ(γ + 1)m − 4γ2 .
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This then implies that

sw(am) = n

m
·

2m2(1 − γ) +
(
m(2 − 3γ) + 2γ + m2γ

)
γ

2(1 − γ)m2 + 2γ(γ + 1)m − 4γ2 ,

and so we ultimately get the following social welfare for each alternative, for k from 1 to m − 1:

sw(ak) = n

m
·

γ
(
2(1 − γ)km + γ

(
m2 − m + 2

))
2(1 − γ)m2 + 2γ(γ + 1)m − 4γ2 .

The chain of inequalities sw(am) > · · · > sw(a1) does indeed hold, and knowing this, we can verify that
the above utilities are non-negative. This gives distortion, after simplifying:

sw(am)
sw(a1) = 1 + 2(1 − γ)m2

γ (2γ + γm2 + (2 − 3γ)m) .

To show that this is asymptotically as desired, we can write this as:

1 + 2(1 − γ)
γ

(
2γ + γm2 + (2 − 3γ)m

m2

)−1

.

Since, for any positive a, b, we have that (a + b)−1 ⩾ 1
2 min{a−1, b−1}, this expression is in:

Ω
(

1 + 1 − γ

γ
min

{
m2

γ(m2 + 2) ,
m2

m(2 − 3γ)

})
= Ω

(
1 + 1 − γ

γ
min

{
1
γ

, m

})
,

which in the γ → 0 regime is asymptotic in Ω
(

min{1/γ,m}
γ

)
.

A.3 Proof of Theorem 7
Theorem 7. For all randomized single-winner rules f ,

distsingle-win
rank (f) ∈ Ω (min {m, 1/γmin}) .

Proof. Use the same input profile ρ⃗ as in the proof of Theorem 3. Let p(ai) be the probability that ai is
picked by rule f and without the loss of generality, suppose that amin = arg mina p(a).

Then, for any j, 1 =
∑

i p(ai) ⩾ p(aj) + (m − 1)p(amin), so p(aj) ⩽ 1 − (m − 1)p(aj)
By the proof of Theorem 3, sw(a1) ⩽ sw(a2) ⩽ · · · ⩽ sw(am), and so we can maximize social welfare by

picking am.
The expected social welfare of f is at most:

Ea∼f(ρ⃗)[sw(a)] = 1
m

sw(am) + m − 1
m

m−1max
k=1

sw(ak)

= n

m(2(1 − γ)m2 + 2γ(γ + 1)m − 4γ2) ·
(2m2(1 − γ) +

(
m(2 − 3γ) + 2γ + m2γ

)
γ

m

+ m − 1
m

· (γ
(
2(1 − γ)(m − 1)m + γ

(
m2 − m + 2

))
)
)

= n

m
· γ(γ − 2)(m − 2)(m − 1) − 2m

2((1 − γ)m + 2γ)(m − γ) .
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So, the distortion is:

sw(am)
Ea∼f(ρ⃗)[sw(a)] = n

m
·

2m2(1 − γ) +
(
m(2 − 3γ) + 2γ + m2γ

)
γ

2(1 − γ)m2 + 2γ(γ + 1)m − 4γ2

·
(

n

m
· γ(γ − 2)(m − 2)(m − 1) − 2m

2((1 − γ)m + 2γ)(m − γ)

)−1

= 1 + 2(1 − γ)(m − 1)((1 − γ)m + 2γ)
γ(2 − γ)(m − 2)(m − 1) + 2m

⩾ 1 + 2(1 − γ)2(m − 1)m
γ(2 − γ)(m − 2)(m − 1) + 2m

.

Since, for any positive a, b, we have that (a + b)−1 ⩾ 1
2 min{a−1, b−1}:

sw(am)
Ea∼f(ρ⃗)[sw(a)] ∈ Ω

(
(1 − γ)2 min

{
2(m − 1)m

γ(2 − γ)(m − 2)(m − 1) ,
2(m − 1)m

2m

})
∈ Ω

(
(1 − γ)2 min

{
1
γ

, m

})
,

which in the γ → 0 regime, is Ω (min {1/γ, m}).

B Distortion with Unrestricted Utilities and No Public Spirit
In this section, we consider the distortion that can be achieved under various ballot formats without an
assumption of public-spirited voters, or equivalently, when γi = 0 for every voter i ∈ N . This serves as
a benchmark and motivates the need for cultivating public spirit among voters. It is also interesting to
note that without any public spirit, the information in the ballots is useless as rules that ignore the ballots
altogether turn out to be worst-case optimal. In contrast, the worst-case optimal rules in the presence of
even a little bit of public spirit are both qualitatively and quantitatively fairer.

Proposition 4. For any ballot format X ∈ {rank, vfm, knap, τ -th, D-rth} (with any threshold τ and threshold
distribution D), every deterministic rule has unbounded distortion when γi = 0 for all i ∈ N .

Proof. First, consider the ballot formats other than randomized threshold approval votes. For deterministic
threshold approval votes, pick any threshold τ ∈ [0, 1]. Let n be even.

Consider an instance as follows. The cost of each alternative is 1, i.e., c(a) = 1 for each a ∈ A. Pick any
two alternatives a1, a2 ∈ A, and let the input profile be as follows. Partition the voters into two equal-sized
groups N1, N2.

• Under X ∈ {rank, vfm}, each voter in N1 ranks a1 at the top, a2 next, and the remaining alternatives
afterwards (arbitrarily); and each voter in N2 ranks a2 at the top, a1 next, and the remaining alternatives
afterwards (arbitrarily).

• Under X ∈ {knap, τ -th} (where τ ̸= 0), each voter in N1 submits {a1} and each voter in N2 submits
{a2}.

• Under X = τ -th with τ = 0, every voter approves all the alternatives.

Fix any of the above ballot formats X and consider any deterministic rule fX. Suppose it picks alternative
a. Note that at least one of a1 and a2 is not picked by fX. Due to the symmetry, assume without loss of
generality that it is a1. Then, for an arbitrarily chosen ϵ ∈ (0, 1), consider the following consistent utility
matrix U .
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• Each voter in N1 has utility 1 for a1 and 0 for all other alternatives.

• Each voter in N2 has utility ϵ for a2 and 0 for all other alternatives.

Then, the distortion of fX is at least

sw(a1, U)
sw(a, U) = n/2

ϵ · n/2 = 1
ϵ

.

Because ϵ ∈ (0, 1) was chosen arbitrarily, we can take the worst case by letting ϵ → 0, which establishes
unbounded distortion.

For randomized threshold approval votes with any threshold distribution D, we cannot fix the input
profile upfront as it depends on the threshold τ sampled from D. However, we can assume that for each τ
the rule sees the profile described above for τ -th. The proof continues to work because the consistent utility
matrix U described above is independent of the value of τ (and hence, can be set upfront without knowing
the value of τ).

Proposition 5. For any ballot format X ∈ {rank, vfm, knap, τ -th, D-rth} (with any threshold τ and threshold
distribution D), every randomized rule has distortion at least m when γi = 0 for all i ∈ N and this is tight.

Proof. For the upper bound under all ballot formats, it suffices to show that the trivial randomized rule f ,
which does not take any ballots as input and simply returns a single alternative chosen uniformly at random,
achieves distortion at most m. Fix any instance U and let A∗ be an optimal budget-feasible set of alternatives.
Then, the expected social welfare under f is

1
m

∑
a∈A

sw(a, U) ⩾ 1
m

sw(A∗, U),

which implies the desired upper bound of m on the distortion of f .
For the lower bound, we simply extend the argument from the proof of Proposition 4. Define an instance

with m alternatives a1, a2, . . . , am, all with cost 1 (i.e., c(aj) = 1 for all j ∈ [m]). Fix any randomized rule fX
for each ballot X in the statement of the proposition.

Let us first consider ballot formats other than randomized threshold approval votes. Consider the following
symmetric profiles for each ballot format. Suppose n divides m and voters are partitioned into m equal-size
groups N1, . . . , Nm. Then:

• for X ∈ {rank, vfm}, for each j ∈ [m], every voter in Nj submits the ranking aj ≻ aj+1 ≻ · · · ≻ am ≻
a1 ≻ · · · ≻ aj−1, and

• for X = {knap, τ -th} (for any τ), for each j ∈ [m], every voter in Nj submits the set of alternatives {aj}.

For τ -threshold approval votes, there is an edge case where this profile may not be feasible with τ = 0, in
which case we can set the profile to have every voter approving all alternatives. The utility matrix defined
below would still remain consistent in this case.

For each ballot format X, the corresponding rule must pick at least one alternative with probability
pX ⩽ 1/m. Due to the symmetry, we can assume without loss of generality that this alternative is a1.

Fix any ϵ ∈ (0, 1). We define a consistent utility matrix U that works for all of the above ballot formats:

• Every voter in N1 has utility 1 for a1 and 0 for all other alternatives.

• For each j ∈ {2, . . . , m}, every voter in Nj has utility ϵ for aj and 0 for all other alternatives.

Finally, notice that the maximum possible social welfare is sw(a1, U) = 1, whereas the expected social
welfare under the rule fX is pX · 1 + (1 − pX) · ϵ ⩽ 1/m + (1 − 1/m) · ϵ. Thus, the distortion of fX is at least

1
1/m+(1−1/m)·ϵ . Since ϵ ∈ (0, 1) was chosen arbitrarily, we can take the worst case by letting ϵ → 0, in which
case we get that the distortion must be at least m.
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For randomized threshold approval votes with threshold distribution D, we cannot fix the input profile as
the input profile depends on the threshold τ sampled from D. However, we can assume that the rule sees the
generic input profile described above (where each voter approves only her most favorite alternative) for any
τ ̸= 0 and the edge-case input profile (where every voter approves all the alternatives). Due to the symmetry,
the rest of the argument goes through as the final utility matrix U constructed above is consistent with these
input profiles for all τ .

C Predefined Bundles under Unit-sum Utilities
Ranking predefined bundles is a generalization of ranking by value. When all alternatives have cost equal to
the budget, Theorem 20 simply returns the Copeland winner. In the unit-sum model, Copeland must incur
Ω(m) distortion, and so this rule must incur Ω(m) distortion for unit-sum utilities in the worst case.

In general, we can induce a predefined bundles rule from any single-winner voting rule. If the distortion is
d in the single-winner case, our Theorem 20 gives at least d distortion for participatory budgeting. Because
all ordinal single-winner voting rules must incur Ω(m) distortion, this forces our ballot format to incur Ω(m)
distortion in the unit-sum case, regardless of the single-winner rule it is based on.

D The Robustness of Each Voting Rule
In this section, we justify that all upper bounds are robust to variations in the public spirit of voters. All of
this stems from the robust Lemma 7. We start by proving a stronger version of Lemma 1 that helps us with
the robustness results in this section. Note that Lemma 1 is the special case of Lemma 7 with c = 0.

Lemma 7. (Robust Lemma 1) Let A1, A2 ⊆ A be any two subsets of alternatives. Fix any α ⩾ 0 and define
NA1≻A2 = {i ∈ N : α · vi(A1) ⩾ vi(A2)}. For any c < 1, fix an arbitrary subset of voters N ′

A1≻A2
⊆ NA1≻A2

of size
∣∣N ′

A1≻A2

∣∣ = c · |NA1≻A2 |. Suppose that for all voters i ∈ N ′
A1≻A2

public spirit is small with γi < γmin,
and for all voters i ∈ NA1≻A2 \ N ′

A1≻A2
public spirit is large with γi ⩾ γmin. Then:

sw(A2)
sw(A1) ⩽ α ·

(
1 − γmin

γmin

n

|NA1≻A2 | (1 − c) + 1
)

.

Proof. The proof is the same as the proofs of Lemmas 3.1 and 5.1 by Flanigan et al. [2023]. Let ÑA1≻A2 =
NA1≻A2 \ N ′

A1≻A2
. Indeed, for each voter i ∈ ÑA1≻A2 , we know that αvi(A1) ⩾ vi(A2), and so:

α

(
(1 − γi)ui(A1) + γi

sw(A1)
n

)
⩾ (1 − γi)ui(A2) + γi

sw(A2)
n

⩾ γi
sw(A2)

n
.

Dividing by γi and using the fact that 1−γi

γi
is decreasing in γi we have:

α

(
1 − γmin

γmin
· ui(A) + sw(A1)

n

)
⩾

sw(A2)
n

.

Summing over all voters in ÑA1≻A2 ,

α

(
1 − γmin

γmin

∑
i∈ÑA1≻A2

ui(A1) +
sw(A1)

∣∣ÑA1≻A2

∣∣
n

)
⩾

sw(A2)
∣∣ÑA1≻A2

∣∣
n

.

Using the fact that
∑

i∈ÑA1≻A2
ui(A1) ⩽

∑
i∈N ui(A1) = sw(A1),

α

(
1 − γmin

γmin
sw(A1) +

sw(A1)
∣∣ÑA1≻A2

∣∣
n

)
⩾

sw(A2)
∣∣ÑA1≻A2

∣∣
n

.
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We know that
∣∣ÑA1≻A2

∣∣ ⩾ (1 − c) |NA1≻A2 |. So, after some simplification, we finally get the desired upper
bound:

sw(A2)
sw(A1) ⩽ α

(
1 − γmin

γmin

n

|NA1≻A2 | (1 − c) + 1
)

.

The notion of robustness we rely on is as follows.

Definition 3. Let c ∈ [0, 1]. An instance is (γmin, c)-robust when there exists a subset of N ′ of N such that
|N ′| = c · |N |, all voters i /∈ N ′ have large public spirit with γi ⩾ γmin and all voters i ∈ N ′ have small public
spirit with γi < γmin.

Under this notion of robustness, the rule we rely on in proving every upper bounds, Copeland, has the
following guarantee proven in Corollary 5.3 of Flanigan et al. [2023].

Proposition 6. [Flanigan et al., 2023] For (γmin, c)-robust instances with c < 1/2,

distsingle-win
rank (Copeland) =

(
2γ−1

min − (1 + 2c)
1 − 2c

)2

∈ O
(
(1 − 2c)−2γ−2

min
)

.

As a direct corollary of this, iterated Copeland has the same distortion bound, and so committee selection
done by repeatedly applying a single-winner voting rule is similarly robust. We need the majority of voters to
have a sufficiently large public spirit value, more than 50%, for Copeland to be robust. Predefined bundle
rules only rely on the combinatorial structure of the partitioning, which doesn’t depend on public spirit
values, and on comparisons between bundles, which Lemma 7 shows can be done robustly.

This allows us to rerun the proofs in Section 5, replacing the iterated Copeland bound with its robust
formulation. For (γmin, c)-robust instances with c < 1/2, we then get the following bounds:

• For high-low bundling, modifying Theorem 18 appropriately, we get that distrank-b(HLB)(Copeland) =
O(

√
m/((1−2c)γmin)2),

• For tiered-cost bundling, modifying Theorem 19 appropriately, we get that distrank→rank-b(TCB)(Copeland) =
O(log(m)/((1−2c)γmin)4),

• For exhaustive bundling, modifying Theorem 20 appropriately, we get that distrank→rank-b(EB)(Copeland) =
O(1/((1−2c)γmin)4).

When a constant proportion—larger than half—of the voters have sufficiently large public spirit, the
asymptotic behavior of the distortion doesn’t change. We can prove similar robustness bounds for each of the
other ballot formats, though they may be less robust to large numbers of voters with low public spirit.

For ease of exposition, we first show a Corollary of Lemma 7 that allows any subset of voters to have zero
utility.

Corollary 2. Let A1, A2 ⊆ A be any two subsets of alternatives. Fix any α ⩾ 0 and define NA1≻A2 = {i ∈
N : α · vi(A1) ⩾ vi(A2)}. For any constant c < |NA1≻A2 |/n, fix an arbitrary subset of voters N ′ ⊆ N of
size |N ′| ⩽ cn. Suppose that for all voters i ∈ N ′ public spirit is small with γi < γmin, and for all voters
i ∈ NA1≻A2 \ N ′ public spirit is large with γi ⩾ γmin. Then:

sw(A2)
sw(A1) ⩽ α ·

(
1 − γmin

γmin

n

|NA1≻A2 | − cn
+ 1
)

.

Proof. Let N ′
A1≻A2

= NA1≻A2 ∩ N ′ be the set of voters in NA1≻A2 with low public spirit. Necessarily,
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∣∣N ′
A1≻A2

∣∣ ⩽ |N ′| ⩽ cn < |NA1≻A2 |. Define c′ = |N ′
A1≻A2 |/|NA1≻A2 | < 1. By Lemma 7,

sw(A2)
sw(A1) ⩽ α ·

(
1 − γmin

γmin

n

|NA1≻A2 | (1 − c′) + 1
)

⩽ α ·

(
1 − γmin

γmin

n

|NA1≻A2 | (1 − |N ′
A1≻A2 |/|NA1≻A2 |)

+ 1
)

⩽ α ·

(
1 − γmin

γmin

n

|NA1≻A2 | (1 − |N ′|/|NA1≻A2 |)
+ 1
)

⩽ α ·
(

1 − γmin

γmin

n

|NA1≻A2 | − cn
+ 1
)

,

as desired.

As Corollary 2 shows, the number of voters that need to prefer one alternative over another in a voting
rule, NA1≻A2 , determines how robust it is to voters with low PS. As long as a constant proportion of the
voters determining any decision we make are sufficiently public spirited, the distortion bounds will continue
to hold.

For (γmin, c)-robust instances, we get the following bounds.

• For deterministic ranking by value, the Copeland rule is used, so by Proposition 6, distrank(Copeland) ∈
O (m/((1−2c)γmin)2) when c < 1/2.

• For stochastic ranking by value, we first must bound the robust distortion of the maximal lottery
rule. Here, the comparisons made require n/2 voters to prefer one alternative over another, so we get
O (1/((1 − 2c)γmin)) distortion when c < 1/2.
By the reduction from single-winner rules to randomized participatory budgeting rules in Lemma 3 and
Lemma 4, we get the robust distortion bound of distrank(Maximal Lottery) ∈ O (log(m)/(1−2c)γmin) when
c < 1/2.

• For stochastic ranking by value per money By the exact same argument, modifying Theorem 9,
it follows that we get a robust upper bound of distvfm(f) ⩽ O (log(m)/(1−2c)γmin) when c < 1/2.

• For one-approvals, in Proposition 1, a plurality rule is used: an alternative is chosen when at least
1/m voters prefer one alternative over another. This gives us a robust upper bound of dist1-app(f) ∈
O
(

m2

(1−cm)γmin

)
when c < 1/m.

• For threshold approvals, in Theorem 14, plurality is used, netting a robust upper bound of
dist(1/m)-th(f) ∈ O

(
m2

(1−cm)γmin

)
when c < 1/m.

• For knapsack, in Theorem 12, |NA1≻A2 | could be as low as 1/2m2. This gives us a robust upper bound
of distknap(f) ∈ O

(
m3

(1−2m2c)2γ2
min

)
when c < 1/2m2.

• For committee selection knapsack, in Theorem 13, |NA1≻A2 | could be as low as 2/m, resulting in
distortion 1 + m

2 + 2 1−γmin
γmin(2−mc) m2 when c < 2/m.

E Experiments
In this section, we discuss in detail the analysis of the cognitive load on voters for ranking pre-defined bundles.

The database of all participatory budgeting elections taken from the Pabulib database [Faliszewski et al.,
2023] on January 2025 is used to perform the analysis in this section. To focus the analysis on participatory
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Figure 2: A quantile plot of the number of bundles
voters have to rank using the constant distortion
two round voting rule given in Section 5.3, on a
log scale.
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Figure 3: A quantile plot of the number of bun-
dles voters have to rank per alternative using the
constant distortion two round voting rule given
in Section 5.3.

budgeting elections in practice, this excludes the elections run on Mechanical Turk. All in all, there are 1244
elections in the dataset.

Complete ordinal rankings are required for a constant distortion rule, so when this is not available, we fill
in each voter’s missing preferences uniformly randomly. To get a full ranking over alternatives when the vote
type is cumulative or scoring based, we use the reported alternatives in the order and append the remaining
alternatives to the end shuffled uniformly randomly. When the vote type is approval, we also shuffle the order
of the reported alternatives uniformly randomly before appending the remaining unreported ones for each
voter. Each election is run three times, and the number of bundles remaining is averaged. The seeds used to
fill in missing voter preferences uniformly in these experiments are randomly chosen at the beginning.

The experiments were conducted on a system running Windows 11, with 32 GB of RAM, and on a 13th
Gen Intel(R) Core(TM) i9-13900H @ 2600 Mhz CPU.

The number of bundles voters rank in the second round of voting is shown in Figure 2 and Figure 3.
While already small the majority of the time, there are elections where the number of bundles voters rank
are up to 10 times more than the number of bundles. There is, however, redundancy in real world elections
we can exploit here that allows us to prune bundles we know are dominated from voter preferences before the
second round of voting. This can be done while maintaining constant distortion.

Proposition 7. Consider the total ordering ≻C of the alternatives given by the iterated Copeland rule, and
two bundles B1, B2 ⊆ A. If there exists a one-to-one function f : B1 → B2 such that f(b) ≻C b for all b ∈ B1,
then

sw(B1)
sw(B2) ⩽ 2γ−1

min − 1. (4)

Proof. When a ≻C b, by the distortion of Copeland given in Theorem 3.3 of Flanigan et al. [2023], sw(b) ⩽
(2γ−1

min − 1)sw(a). Therefore, for each b ∈ B1, we know that sw(f(b)) ⩽ (2γ−1
min − 1)sw(b). Summing

over all b ∈ B1, we get that sw(B1) ⩽ (2γ−1
min − 1)

∑
b∈B1

sw(b). Because f is one-to-one, we know that∑
b∈B1

sw(f(b)) ⩽ sw(B2), which finally implies

sw(B1)
sw(B2) ⩽ 2γ−1

min − 1.

Proposition 7 allows us to prune bundles before the second round of voting with a constant 1/γ2
min factor

increase in distortion in the worst case. Because Copeland gives us a total ordering, this induces a partial
ordering over the bundles, the maximums of which in our preselected bundles we ask voters to rank in the
second round of voting.
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Figure 4: A quantile plot over 1244 real-world PB instances showing the number of bundles voters have to
rank after pruning dominated bundles, on a log scale.

The number of bundles voters rank in the second round of voting after pruning dominated bundles is
shown in Figure 4 and Figure 1
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