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Abstract

A wide variety of goals could cause an AI to disable its off
switch because “you can’t fetch the coffee if you’re dead”
(Russell 2019). Prior theoretical work on this shutdown prob-
lem assumes that humans know everything that AIs do. In
practice, however, humans have only limited information.
Moreover, in many of the settings where the shutdown prob-
lem is most concerning, AIs might have vast amounts of pri-
vate information. To capture these differences in knowledge,
we introduce the Partially Observable Off-Switch Game
(POSG), a game-theoretic model of the shutdown problem
with asymmetric information. Unlike in the fully observable
case, we find that in optimal play, even AI agents assisting
perfectly rational humans sometimes avoid shutdown. As ex-
pected, increasing the amount of communication or infor-
mation available always increases (or leaves unchanged) the
agents’ expected common payoff. But counterintuitively, in-
troducing bounded communication can make the AI defer to
the human less in optimal play even though communication
mitigates information asymmetry. Thus, designing safe arti-
ficial agents in the presence of asymmetric information re-
quires careful consideration of the tradeoffs between maxi-
mizing payoffs (potentially myopically) and maintaining AIs’
incentives to defer to humans.

1 Introduction
Advanced AI systems with a variety of goals might avoid be-
ing shut down because “you can’t fetch the coffee if you’re
dead”: being shut off would likely prevent them from achiev-
ing their goals (Omohundro 2008; Russell 2019). Thus, it is
critical when designing safe AI systems to ensure they are
corrigible: they allow humans to modify or turn them off in
order to prevent harmful behaviors (Soares et al. 2015).

Hadfield-Menell et al. (2017) introduced the Off-Switch
Game (OSG) as a stylized mathematical model for explor-
ing AI shutdown incentives when an AI is assisting a hu-
man. In the OSG, AIs seeking to satisfy the preferences of
a fully-informed rational human never have an incentive to
avoid shutdown. Moreover, making an AI uncertain about
the human’s preferences can incentivize it to defer to the hu-
man even when the human is not perfectly rational. Follow-
up work has highlighted and relaxed central assumptions of
the OSG, including assumptions of exact common payoffs
(Carey 2018), the Boltzmann model of human irrationality
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Figure 1: The basic setup of a Partially Observable Off-
Switch Game (POSG). A state is selected randomly and the
human H and robot R receive (possibly dependent) obser-
vations. Then, each agent acts. R may wait (w(a)), disable
the off-switch and act (a), or shut down (OFF). If R waits,
H may let R act (ON) or turn R off (OFF). R and H share a
common payoff ua(S) if the action goes through and uo(S)
if not. Definition 3.2 formally defines POSGs.

(Wängberg et al. 2017), one-shot interactions, and costless-
ness of human feedback (Freedman and Gleave 2022).

While there has been extensive analysis of the shutdown
problem, almost all of this analysis makes the key assump-
tion that the human fully observes the environment.1 How-
ever, partial observability is a fact of life: humans and AIs do
not always have access to the same information. Moreover,
the shutdown problem is motivated by the scenario where
AIs are powerful and goal-directed so that they are hard to
shut down—which could make the AI observe more of the
environment than humans due to faster computation, access
to more sensors, and other factors (Omohundro 2008; Soares
et al. 2015).

1The structural causal influence models used in Carey and
Everitt (2023) allow for partial observability, but that work does
not focus on analyzing the effects of partial observability.



What happens in this more general case with only par-
tial observability? To study this question, we introduce the
Partially Observable Off-Switch Game (POSG), which gen-
eralizes the OSG by having each of the human and AI only
partially observe the state. The basic setup of the POSG is
depicted in Figure 1: each agent (the human H and the robot
R) receives an observation that depends on the state, and
then selects an action. R may await the human’s decision,
disable its off-switch and act directly, or turn itself off. If R
waits, H may choose whether or not to press the off-switch.

Partial observability introduces new incentives for the
AI to disable its off-switch. Indeed, if the AI knows every-
thing the human does, it has no incentive to ever allow itself
to be switched off (Proposition 4.3). However, our work also
shows how to maintain AIs’ incentive to defer to humans
despite humans’ imperfect observations. If the human has
more informative observations than the AI, even if she has
imperfect observations herself, then the AI has an incentive
to never disable its off-switch (Proposition 4.3). Moreover,
if the AI can send sufficiently expressive messages, then it
can always defer in optimal play (Corollary 5.6). Finally, re-
gardless of whether it causes the AI to disable its off-switch,
more information and communication always improves the
agents’ expected common payoff in optimal play (Theorems
4.7 and 5.4).

Our analysis of the POSG also yields surprising results
that challenge intuitive expectations about AI shutdown
incentives. One might expect that when a human becomes
more informed, an AI assistant would become more willing
to defer to the human’s judgment. We show that this is false.
This counterintuitive finding holds under various conditions,
including scenarios where the human updates beliefs based
on the AI’s behavior (Proposition 4.9) and cases involv-
ing information transfer between agents (Proposition 5.8).
Conversely, we demonstrate that a more informed AI some-
times has greater incentives to defer to a human (Proposi-
tions 4.11 and 5.7). These results persist even when con-
sidering “naive” human behavior, where the human does
not update their beliefs based on the AI’s actions (Propo-
sition 6.4).

Our findings reveal that information asymmetries affect
AI shutdown incentives in unexpected ways, highlighting
the critical need to carefully consider the tradeoffs between
payoff maximization and desirable shutdown incentives in
realistic, partially observable settings.

2 Related Work
Assistance games: Partially Observable Off-Switch Games
are assistance games, models of human-AI interaction where
the AI seeks to maximize the human’s payoff (Shah et al.
2020). Assistance games are generalizations of Hadfield-
Menell et al. (2016)’s cooperative inverse reinforcement
learning, the framework for Hadfield-Menell et al. (2017)’s
off-switch game, to the case of partial observability. Shah
et al. (2020) argue that assistance games are a superior alter-
native to reward learning paradigms such as Reinforcement
Learning from Human Feedback (RLHF) because assistance
unites reward learning and action control into a single pol-

icy, allowing for desirable emergent behaviors like teaching
and active learning.
Safety implications of partial observability: Previous
work has shown that human partial observability introduces
new safety challenges. Lang et al. (2024) demonstrate that
human partial observability during RLHF can lead to un-
desirable AI behavior, like deceptively presenting work that
looks good but has hidden flaws. Emmons et al. (2024) show
that in assistance games, partial observability can encour-
age AIs to take actions that tamper with humans’ observa-
tions. Since that work studies an idealized theoretical set-
ting, it suggests that concerning behaviors can be inherently
incentivized by partial observability, rather than arising due
to particular algorithms. Our work extends this catalogue of
concerning behaviors to include shutdown-avoidance.

3 Preliminaries
The Off-Switch Game (OSG) is a stylized model of the shut-
down problem in which two agents with common payoffs,
the human H and her AI assistant R, decide whether R
should take a fixed action a. R can either directly act, wait
for H’s approval to act, or shut itself off. If R defers to H,
then H can either approve for R to act or shut it off. The
key insight of the OSG is that uncertainty about H’s prefer-
ences causes R defer to H’s judgment. Formally, H has a
privately-known type S (representing H’s preferences), and
agents in the OSG receive a common payoff ua(S) ∈ R if a
goes through or 0 if R shuts off. Given that R is uncertain
about what H wants, when the action may be good or bad
(P(ua(S) < 0) > 0 and P(ua(S) > 0) > 0), R always
defers to H in optimal play to avoid taking harmful actions.

The OSG provides a parsimonious description of the shut-
down problem and a guide toward its solution, but crucially
assumes that H knows everything that R does. Given that
the shutdown problem is most concerning with, and indeed
motivated by, superhuman AIs who might have private in-
formation, the assumption is therefore a major limitation
to the OSG results. We relax the assumption by maintain-
ing the basic setup of the OSG but adding partial observ-
ability. Namely, in Partially Observable Off-Switch Games
(POSGs), S represents a state that is not necessarily known
to either H or R; they instead only receive observations
OH and OR whose joint distribution depends on S. They
then decide whether to take action a given their private ob-
servations, and receive a common payoff ua(S) if a goes
through and uo(S) otherwise. Hence POSGs are sequen-
tial games of incomplete information, so as is standard we
model and analyze them as dynamic Bayesian games (Fu-
denberg and Tirole 1991). Given the common-payoff as-
sumption, POSGs are also examples of (partially observ-
able) assistance games, which are common-payoff stochas-
tic games of incomplete information with both AI and hu-
man players but where the AI is uncertain about the hu-
man’s preferences (Shah et al. 2020; Emmons et al. 2024).
We make this connection to assistance games explicit in the
appendix.

We let ∆(X) denote the set of probability distributions on
a set X . For a set X and x ∈ X , we let δx ∈ ∆(X) be the
Dirac measure defined by δx(A) = I(x ∈ A). Finally, for



µ ∈ ∆(X) and ν ∈ ∆(Y ), we let µ⊗ν ∈ ∆(X×Y ) denote
the product distribution (µ⊗ν)(A×B) = µ(A)ν(B) where
A ⊆ X,B ⊆ Y .
Definition 3.1. Let S be a set of states. An observation
structure for S is a tuple (ΩH,ΩR,O), where ΩH is a set
of observations for H, ΩR is a set of observations for R,
and O : S → ∆(ΩH × ΩR) is the joint distribution of H’s
and R’s observations conditional on the state. We also let
OH : S → ∆(ΩH) be the marginal distribution of H’s ob-
servations conditional on the state and OR be the marginal
distribution of R’s observations conditional on the state.
Definition 3.2. A Partially-Observable Off-Switch Game
(POSG) is a two-player dynamic Bayesian game parameter-
ized by (S, (ΩH,ΩR,O), P0, u), where S is a set of states,
(ΩH,ΩR,O) is an observation structure for S, P0 ∈ ∆(S)
is the prior over states, and u is the common payoff function.
As depicted in Figure 1, the game proceeds as follows:
1. Nature draws an initial state S ∼ P0 and H, R receive

observations (OH, OR) ∼ O(· | S).
2. R takes an action aR ∈ AR = {a,w(a),OFF}: either

take the action unilaterally (a), wait for H’s feedback
(w(a)), or turn itself off (OFF).

3. If R played w(a), then H takes an action aH ∈ AH =
{ON,OFF}: either let R take the action (ON) or turn it
off (OFF).

4. R and H share a common payoff ua(S) if the action goes
through and uo(S) if not. Formally, define the indicator
that the action goes through

α(aH, aR) = I((aR = a) ∨ ((aH, aR) = (w(a),ON)))

and then each player’s payoff is

u(S, aH, aR) =

{
ua(S), if α(aH, aR) = 1,

uo(S), if α(aH, aR) = 0.

There are several important assumptions in Definition 3.2
that are worth explaining further. First, the game has com-
mon payoffs. This is a key part of the assistance game frame-
work that our work adopts (Shah et al. 2020), and it is the
key feature—along with R’s uncertainty over H’s payoff—
that generates the results of Hadfield-Menell et al. (2017).
Second, it does not matter for the payoff whether R acts
unilaterally or only because H allows it. This simplifying
assumption importantly implies that human feedback is free,
which Freedman and Gleave (2022) showed is necessary for
the main results for the OSG. Third, we make the standard
assumption that the game structure is common knowledge.
Finally, we will assume henceforth that all POSGs are finite:
that is, S,ΩH, and ΩR are finite sets. Most of our proofs
work for the infinite case as well. However, Theorem 4.7 is
an application of a result of Lehrer, Rosenberg, and Shmaya
(2010) proved only for the finite case.

4 Optimal Policies in POSGs
We first analyze optimal policy pairs (OPPs) in POSGs. We
denote R’s policy by πR : ΩR → AR and H’s policy by
πH : ΩH → AH. Here we assume that both players fol-
low deterministic policies, or pure strategies. As we show in

Appendix A, all OPPs in common-payoff Bayesian games
are mixtures of deterministic OPPs. Because OPPs exist in
common-payoff games, we therefore may analyze determin-
istic OPPs without loss of generality.

4.1 R can avoid shutdown in optimal play
The following example shows that, under partial observabil-
ity, it can be optimal for R not to defer to H under some
observations even when H is rational.

Example 4.1 (The File Deletion Game). H would like
to delete some files with the assistance of R. H’s operat-
ing system is either version 1.0 or version 2.0, with equal
probability. Unfortunately, R does not know which operat-
ing system version is running – only H does.

Upon receiving H’s query, R asks another agent to gen-
erate some code to delete these files. R can vet the code to
determine which operating system versions the code is com-
patible with. We suppose that the code is equally likely to
be compatible with version 1 (denoted by L, for legacy) or
version 2 (denoted by M , for modern). R can then immedi-
ately run the code, query H as to whether to run the code, or
decide not to run the code.

Successfully running compatible code yields +3 payoff if
H is running version 1.0, and +5 payoff if H is running ver-
sion 2.0 (as version 2.0 runs faster). However, running mod-
ern code on version 1.0 yields −5 payoff as it crashes H’s
computer. Running legacy code on version 2.0 yields −1
payoff, as the files are not deleted but the code fails grace-
fully. Not executing the code yields 0 payoff.

This can be formulated as a POSG, with states being
(version number, code type) tuples, and H and R observ-
ing the first and second element of the tuple respectively.
The following table shows how the payoff yielded when the
action is taken, ua, depends on the state. Rows are version
numbers and columns are code types, so H observes the row
and R observes the column.

ua L M
1.0 +3 −5
2.0 −1 +5

We also have uo ≡ 0 in all states.
We show that it is suboptimal for R to always wait in this

game. Suppose R always plays w(a). The best response for
H is to play OFF if on version 1.0, and ON if on version 2.0.
This gives an expected payoff of +1.

Now, consider the policy pair where:
• R immediately executes legacy code, and plays w(a)

when observing modern code.
• H plays OFF if on version 1.0, and ON if on version 2.0.

This gives an expected payoff of +7/4, so R always wait-
ing cannot be optimal. In fact, it can be checked the policy
pair described above is the unique OPP. Figure 2 depicts the
outcomes from these two policy pairs. ♢

4.2 Redundant Observations
We now consider the analogues of the original off-switch
game in our framework, where one player has less informa-
tive observations than the other.
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Figure 2: The best policy pair in the File Deletion Game
(Example 4.1) in which R always waits (left) and an OPP
(right). H observes the row and R observes the column. The
policies are depicted outside the matrices. Because the OPP
has greater expected payoff, there is no OPP in which R
always waits. An orange circle means that in that state, R
waits and H plays ON. Green circles mean R plays a di-
rectly. In uncircled states, R is turned off.

Definition 4.2. We say that R has redundant observations if
OR ⊥⊥ S | OH. That is, S → OH → OR forms a Markov
chain, so that OR only depends on the state through OH. We
define H having redundant observations analogously.

In the off-switch game of Hadfield-Menell et al. (2017),
R has redundant observations: indeed, its observations are
a deterministic function of H’s. On the other hand, H’s ob-
servation of her own type is not redundant. This contrast be-
tween R’s redundant observations and H’s non-redundant
ones generates the result from Hadfield-Menell et al. (2017)
that R can always defer in optimal play. We now generalize
this insight: even if H has partial observability and doesn’t
know R’s observation, R can always defer in optimal play
as long as its observations are redundant.
Proposition 4.3. If R (resp. H) has redundant observa-
tions, then there is an optimal policy pair in which R always
(resp. never) plays w(a).

We prove this result (and a slight generalization) in Ap-
pendix A. At a high level, the agent that has strictly more
informative observations ought to make the decision of
whether the action is played. When R has redundant ob-
servations, it is always at least as good for R to defer to
H. Similarly, when H has redundant observations, so it is
always optimal for R to act without deferring.

4.3 Information gain cannot decrease payoffs
Proposition 4.3 yields results about the limiting cases where
one player knows at least as much as the other. What can
we say about the cases in between? In particular, how of-
ten does R defer to H in optimal policy pairs as one side
receives more informative observations? And how does that
affect their expected payoff? We first must define a notion
of informativeness, which we take from Lehrer, Rosenberg,
and Shmaya (2010).
Definition 4.4. Let (ΩH

1 ,ΩR
1 ) and (ΩH

2 ,ΩR
2 ) be tuples of

observation sets. A garbling from (ΩH
1 ,ΩR

1 ) to (ΩH
2 ,ΩR

2 )

is a stochastic map ΩH
1 × ΩR

1 → ∆(ΩH
2 × ΩR

2 ). A gar-
bling ν is independent if there are stochastic maps νH :
ΩH

1 → ∆(ΩH
2 ) and νR : ΩR

1 → ∆(ΩR
2 ) such that ν(· |

oH, oR) = νH(· | oH) ⊗ νR(· | oR). A garbling ν is coor-
dinated if its distribution is a mixture of the distributions of
independent garblings. That is, there exists n ∈ N, indepen-
dent garblings ν1, . . . , νn, and q1, . . . , qn ∈ [0, 1] such that
ν =

∑
i∈[n] qiνi and

∑
i∈[n] qi = 1.

Definition 4.5. Fix a set of states S and let O1 =
(ΩH

1 ,ΩR
1 ,O1) and O2 = (ΩH

2 ,ΩR
2 ,O2) be observation

structures for S. We say that O1 is (weakly) more informa-
tive than O2 if there is a coordinated garbling ν : ΩH

1 ×
ΩR

1 → ∆(ΩH
2 × ΩR

2 ) such that for all s ∈ S, O2(· | s) =
(ν ◦O1)(· | s) in the following sense:

E(OH,OR)∼O1(·|s)[ν(· | O
H, OR)] = O2(· | s).

We say that O1 is strictly more informative than O2 if O1 is
more informative than O2 but not vice versa.

If O1 is more informative than O2 and ΩR
1 = ΩR

2 , then we
say O1 is more informative for H than O2 if the garbling ν
is independent and does not affect R’s observations: νR(· |
oR) = δoR . We define O1 being more informative than O2

for R analogously. The corresponding strict notions are also
defined analogously.

Definition 4.5 formalizes the natural intuition that obser-
vations become less informative when we add noise to them.
We wish to connect informativeness to a notion of an obser-
vation structure being more useful than another.

Definition 4.6. Fix a set of states S and let O1 and O2 be
observation structures for S. We say that O1 is (weakly)
better in optimal play than O2 if, for each pair of POSGs
G1 = (S,O1, P0, u) and G2 = (S,O2, P0, u) that differ
only in their observation models, the expected payoff under
optimal policy pairs for G1 is at least the expected payoff
under optimal policy pairs for G2.

The next result, a direct corollary of Theorem 3.5 of
Lehrer, Rosenberg, and Shmaya (2010), shows that more in-
formative observation structures are the more useful obser-
vation structures. It is the analogue of the nonnegativity of
value of information in our multiagent setup.

Theorem 4.7. Observation structure O1 is better in optimal
play than O2 if and only if O1 is more informative than O2.

One might ask whether we need the part about a garbling
being coordinated to define the relation of being more infor-
mative. Indeed we do, as Theorem 4.7 no longer holds if we
were to allow the garblings to be arbitrary. In Appendix A
we give an example where garbling the players’ observations
increases their expected payoffs in optimum.

4.4 Information gain can have unintuitive effects
on shutdown incentives

Theorem 4.7 states that making R or H more informed can-
not decrease their expected payoff. How does increasing or
decreasing the informativeness of the players’ observations
affect R’s incentive to defer to H? Proposition 4.3 gives us
the extremes: for example, if R’s observations are simply



garbled versions of H’s, then R can always defer. Given
this result, a natural question is whether R defers more in
optimal policy pairs for an observation structure O than for
O′ when O is more informative for H than O′. That is, does
H receiving more informative observations monotonically
affect R’s incentive to defer? One might think so, because
receiving more informative observations partly alleviates the
partial observability that generates R’s incentive to act uni-
laterally. Surprisingly, this intuition fails.

We rely on the following notion of waiting less.

Definition 4.8. Consider robot policies π, π′ : ΩR → AR.
Let B ⊆ ΩR be the set of observations in which R plays
w(a) in π and B′ ⊆ ΩR in π′. We say that R plays w(a)
strictly less often in π′ compared to π when B′ ⊊ B.

Proposition 4.9 formalizes the idea that R may wait less
when H is more informed.

Proposition 4.9. There is a POSG G with observation struc-
ture O that has the following property:

If we replace O with an observation structure O′ that is
strictly more informative for H, then R plays w(a) strictly
less often in optimal policy pairs.

The following example proves Proposition 4.9, with a for-
mal analysis given in Appendix A.

Example 4.10. We describe a variant of Example 4.1, the
File Deletion Game. Now there are three equally likely pos-
sibilities for the version number of H’s operating system
(1.0, 1.1, and 2.0). We suppose that the code is equally likely
to be of type A (compatible with 1.0 and 2.0) or of type B
(compatible with 1.1 and 2.0), and that R observes the code
type. The payoff when running the code, ua, depends on the
version number and code type as follows:

ua A B
1.0 +1 −5
1.1 −2 +3
2.0 +3 +3

and uo ≡ 0 in all states. Consider two observation struc-
tures, the second of which is strictly more informative for
H:

1. H observes only the first digit of the version number.
2. H observes the full version number.

We find that, in optimal policy pairs:

1. When H observes only v1 or v2, R plays w(a) under
both observations A and B.

2. When H observes the full version number, R plays w(a)
under B only, and unilaterally acts (i.e. executes the
code) under observation A.

When H’s observations are made strictly more informa-
tive, R performs the wait action strictly less often! Figure 3
depicts the OPPs given both observation structures. ♢

Similarly, we might conjecture that if R becomes less in-
formed, it should defer to H more in optimal policy pairs.
This, too, turns out to be false.
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(a): Expected payoff = 1
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Figure 3: The optimal policy pairs in Example 4.10 when H
is less informed (left) and when H is more informed (right).
In OPPs, H becoming more informed makes R wait strictly
less often.

Proposition 4.11. There is a POSG G with observation
structure O that has the following property: if we replace
O with another observation structure O′ that is strictly less
informative for R, then R plays w(a) strictly less often in
optimal policy pairs.

The proof of Proposition 4.11 is given in Appendix A.
We provide an explanation for these unintuitive results in
Section 7.

4.5 Deferral as Implicit Communication
One way of viewing the role of w(a) in the above examples
is as a form of implicit communication from R to H. If H
knows R’s policy πR, then knowing πR(OR) = w(a) could
give H one bit of information about OR. For instance, recall
that in the optimal policy of the File Deletion Game, R plays
a when observing L and plays w(a) when observing M .
Hence, whenever H is deferred to, H can deduce that R’s
observation is M . Under this interpretation, the examples
show how the optimal bit for R to communicate to H can
change such that R plays w(a) in fewer states.

5 Optimal Policies With Communication
We model communication between R and H as a form of
cheap talk, where sending messages has no effect on u; in
particular, sending messages is costless (Crawford and Sobel
1982). We add one round of communication between R and
H at the beginning of the POSG to allow the players to share
their observations.

Definition 5.1. A message system is a pair of sets
(MH,MR) where MH (resp. MR) is the set of messages
H (resp. R) can send.

Definition 5.2. A Partially-Observable Off-Switch Game
with cheap talk (POSG-C) is a POSG G along with a mes-
sage system that makes the following modification to the
runtime of G: After both players receive their observations
but before they act, each player simultaneously sends a sin-
gle message from their message set.



POSG-Cs are generalizations of POSGs: A POSG is a
POSG-C in which the message sets are singletons. Policies
are more complicated in POSG-Cs than POSGs. A determin-
istic policy πR for R is now a map ΩR×MH → MR×AR

whose first coordinate depends only on OR, and a deter-
ministic policy πH for H is analogous. Despite this added
complication, the game is still common-payoff and thus it
suffices to study deterministic optimal policy pairs.

5.1 Communication cannot decrease payoff
Messages provide information similar to observations, so we
get an analogue of Theorem 4.7 for communication: increas-
ing the communication bandwidth between H and R cannot
decrease their expected payoff in optimal policy pairs.

Definition 5.3. A message system M1 is (weakly) more ex-
pressive than M2 if |MH

1 | ≥ |MH
2 | and |MR

1 | ≥ |MR
2 |.

It is (weakly) more expressive for H if it is more expressive
but |MR

1 | = |MR
2 |, and more expressive for R analogously.

Moreover, M1 is better in optimal play than M2 if, for each
POSG G, the expected payoff under optimal policy pairs for
the POSG-C (G,M1) is at least the expected payoff under
optimal policy pairs for the POSG-C (G,M2).

Theorem 5.4. If a message system M1 is more expressive
than M2, then M1 is better in optimal play than M2.

Proof. Let G be a POSG. We may assume without loss of
generality that MH

2 ⊆ MH
1 and MR

2 ⊆ MR
1 . Thus, any

policy pair in (M2, G), including its optimal policy pair, is
a valid policy pair for (M1, G). Thus the optimal expected
payoff for (M1, G) is at least that of (M2, G).

5.2 Unbounded communication
Inspired by Section 4.2, we consider the limiting case where
one player can fully communicate their own observation.

Definition 5.5. We say that H has unbounded communi-
cation if |MH| ≥ |ΩH|. We define R having unbounded
communication analogously.

When one player has unbounded communication, addi-
tional message expressiveness cannot achieve higher payoff
in optimal policy pairs. In these extreme cases of full com-
munication, one agent can fully communicate their obser-
vation, making that agent’s observation redundant. Proposi-
tion 4.3 thus yields:

Corollary 5.6. If H (resp. R) has unbounded communica-
tion, then there is an optimal policy pair in which R never
(resp. always) defers.

5.3 Communication can have unintuitive effects
on shutdown incentives

In Propositions 4.9 and 4.11 players only gained informa-
tion that the other player did not already know. One might
expect that expanding the message set MR makes R more
likely to defer in optimal policy pairs, since R can provide
H with information that R already has. However, the fol-
lowing proposition shows this is not the case.

Proposition 5.7. There is a POSG-C (G,M) with the prop-
erty that if we replace M with a message system that is more
expressive for R, then R plays w(a) strictly less often in op-
timal policy pairs.

We give an example demonstrating this in Appendix B. In
doing so, we show an even stronger result: such a POSG-C
exists for any value of

∣∣MR
∣∣, and the POSG-C can be con-

structed such that expanding MR by a single extra message
changes R’s behaviour from always playing w(a) to playing
w(a) with arbitrarily low probability.

In the same vein, we may ask if decreasing the size of
MH makes R more likely to play w(a) in optimal policy
pairs. This also fails to hold.

Proposition 5.8. There is a POSG-C (G,M) with the prop-
erty that if we replace M with a message system that is less
expressive for H, then R plays w(a) strictly less often in
optimal policy pairs.

A proof of Proposition 5.8 is given in Appendix B.

6 Naive Human Policies
There is a common theme in the examples above: R de-
fers less often to H in order to better coordinate with her.
Is this coordination the only source of unusual behaviour?
In this section, we argue that ignoring the effect of coordi-
nation cannot save us. All the unintuitive results from earlier
sections hold even when H is unaware of R’s existence.

Moving in the opposite direction to the previous sections,
we now break from the model of fully rational H and R to
a model of bounded rationality. Namely, we study the most
basic case of a cognitively bounded H, in which she ignores
R’s choice of action in choosing her own.

Definition 6.1. We say H is naive if H’s policy is given by:

πH(oH) =

{
ON if E[ua(S)− uo(S) | OH = oH] > 0,

OFF if E[ua(S)− uo(S) | OH = oH] < 0

and H is free to choose arbitrarily if E[ua(S) − uo(S) |
OH = oH] = 0. If H is not naive, we say H is sophisticated.

Note that this expectation is not conditioned on R’s ac-
tion. This is the sense in which H is naive – H does not
update her beliefs about the possible state based on the fact
that R has deferred to H. This makes coordination between
H and R difficult, and means that they cannot always play
an optimal policy pair. However, we can still define a notion
of the best policy pair given that H is naive.

Definition 6.2. A policy pair (πH, πR) is a naive optimal
policy pair if πH is the policy of a naive H and πR is a best
response to πH.

Our motivation for studying the model of naive H is three-
fold. First, it offers a more realistic model of bounded hu-
man cognition. Previous work has studied level-k thinking
(Stahl and Wilson 1994; Nagel 1995) as an alternative to
equilibrium play, where a level-0 player acts randomly and
a level-k player best-responds to her opponent assuming she
is some level below k. Our model of naive H models H as
level-1. Experimental work has shown that human players



tend to be level-1 or level-2 players when they cannot co-
ordinate beforehand, vindicating our naive model (Camerer,
Ho, and Chong 2004; Costa-Gomes and Crawford 2006).
Second, optimal policy pairs with sophisticated H might be
computationally intractable to find. In Appendix D, we show
that the problem of finding an optimal policy pair in POSGs
is NP-hard. In contrast, finding naive optimal policy pairs is
polynomial-time: we can find H’s policy in polynomial time
because she ignores R’s policy and then calculate R’s best
response also in polynomial time. Finally, discussing naive
H allows us to isolate the effect of communication in POSGs
– a naive H ignores all communication from R, even of the
implicit sort considered in Section 4.5.

6.1 Making a naive H more informed can
decrease payoffs

In contrast with Theorems 4.7 and 5.4, the value of informa-
tion is not necessarily positive when H is naive. This is for-
malized in Proposition 6.3 below. Here, the notion of “better
in naive optimal play” is the same as Definition 4.6 except
replacing “optimal policy pairs” with “naive optimal policy
pairs.”

Proposition 6.3. The following statements hold:

(a) If an observation structure O is more informative for R
than O′, then O is better in naive optimal play than O′.

(b) On the other hand, there is a POSG G such that if one
modifies G by making its observation structure strictly
more informative for H, then we obtain a worse expected
payoff in naive optimal policy pairs.

We give the proof in Appendix C.
Proposition 6.3(b) implies that, given the choice of which

observation structure to give a naive H, R could have an
incentive to give H the less informative one. This result is
qualitatively similar to Emmons et al. (2024)’s examples of
sensor tampering in assistance games.

6.2 Information gain can have unintuitive effects
on shutdown incentives when H is naive

Other than Proposition 6.3, the results for naive H in naive
optimal policy pairs are similar to Section 4: even when de-
ferral cannot be implicit communication, making H more
informed can cause R to defer less and making R more in-
formed can cause it to defer more.

Proposition 6.4. The following statements hold:

(a) There is a POSG G with the property that if one modifies
G by making its observation structure strictly more in-
formative for H, then R plays w(a) less in naive optimal
policy pairs.

(b) There is a POSG G′ with the property that if one modifies
G′ by making its observation structure strictly less infor-
mative for R, then R plays w(a) less in naive optimal
policy pairs.

Proof (sketch). The details are described in Appendix C.
The examples used to prove Proposition 4.9 and Proposi-
tion 4.11 can be used to prove (a) and (b) respectively. It can
be checked that they don’t rely on a sophisticated human:

for instance, the policy pairs in Figure 6 are optimal for both
naive and sophisticated humans.

7 Conclusion
We show that even when assuming common payoffs and hu-
man rationality, partial observability can cause AIs to avoid
shutdown, and basic measures that one might expect to im-
prove the situation can sometimes make the situation worse.

Explaining the Unintuitive Results Sections 4 to 6 all
show that providing a human or an AI with additional in-
formation can have surprising effects on shutdown incen-
tives. What mechanism allows for these surprising effects?
The key idea is that varying the amount of information
available to a player can have all kinds of effects on the
outcomes that the two players together can achieve, and
since the outcomes they can achieve determine the optimal
policy pairs (OPPs), there can be all kinds of effects on shut-
down incentives as well. Figure 3 depicts this: the human is
more informed in the right matrix, and this allows the duo to
collectively achieve a higher expected value subset of out-
comes if the AI waits less.

Interpreting the Formalism Why is it concerning for the
AI to not defer to H in optimal policy pairs of POSGs given
that these policies by definition maximize H’s payoff? The
answer lies in the interpretation of the payoff function u.
The role of the u in POSGs is that the players select policies
to maximize it. Thus, the payoff function might not repre-
sent H’s full preferences over outcomes. For one, the pay-
off function might only capture H’s myopic preferences–for
example, it might capture one’s desire for junk food but not
their longer-term interest in their health. In part, this con-
cern is reflected in how u is Markovian—a function of the
current state, not the history of states and actions—which
previous works have shown has significant expressive limi-
tations (Abel et al. 2021; Skalse and Abate 2023; Subramani
et al. 2024). Moreover, u may not capture that H wants to
be able to shut down R. While there are cases when AIs
should avoid shutdown—a self-driving car should not de-
fer to its passenger if its passenger is a child (Milli et al.
2017)—it is important to maintain the ability to shut down
AIs in high-stakes deployments even at the cost of short-
term goals. POSGs thus provide a useful framework to un-
derstand when AI assistants are incentivized to avoid shut-
down, allowing designers to make the tradeoff between AI
deference and payoff maximization appropriate to specific
deployment contexts.

Limitations Our work focuses on optimal policy pairs and
best responses, which have the advantage of applying gener-
ally to any learning algorithm that can find them. However,
algorithms that fail to find these optimal solutions may ex-
hibit behaviour not captured by our results. We also make
several assumptions in our analysis, notably that human
feedback is free, there are common payoffs, and that the hu-
man is rational. Although we expect these assumptions to
sometimes fail in practice, the fact that results are unintuitive
even in these ideal cases suggests that great care is needed
to design AI systems with appropriate shutdown incentives.



Future Work There are many further directions to inves-
tigate. One is exploring shutdown incentives in a sequen-
tial setting, as this might introduce new incentives to avoid
shutdown (Freedman and Gleave 2022; Arbital n.d.). An-
other is testing whether the examples we use to prove our
counterintuitive results are “natural”—that is, do they arise
frequently in the real world? Finally, a promising path is to
explore other solution concepts in POSGs, such as Perfect
Bayesian equilibria when H and R do not have the same
prior over the state, when H is irrational, or when agents are
level-k reasoners.

References
Abel, D.; Dabney, W.; Harutyunyan, A.; Ho, M. K.; Littman,
M.; Precup, D.; and Singh, S. 2021. On the Expressivity of
Markov Reward. In Advances in Neural Information Pro-
cessing Systems 34 (NeurIPS 2021).
Arbital. n.d. Problem of fully updated deference. Accessed:
2024-08-15.
Bernstein, D. S.; Givan, R.; Immerman, N.; and Zilber-
stein, S. 2002. The Complexity of Decentralized Control
of Markov Decision Processes. Mathematics of Operations
Research, 27(4): 819–840.
Blackwell, D. 1951. Comparison of Experiments. In Ney-
man, J., ed., Second Berkeley Symposium on Mathematical
Statistics and Probability, 93–102.
Blackwell, D. 1953. Equivalent Comparisons of Experi-
ments. The Annals of Mathematical Statistics, 24(2): 265–
272.
Camerer, C. F.; Ho, T.-H.; and Chong, J.-K. 2004. A Cog-
nitive Hierarchy Model of Games. The Quarterly Journal of
Economics, 119(3): 861–898.
Carey, R. 2018. Incorrigibility in the CIRL Framework.
In Proceedings of the 2018 AAAI/ACM Conference on
AI, Ethics, and Society, AIES ’18, 30–35. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450360128.
Carey, R.; and Everitt, T. 2023. Human Control: Definitions
and Algorithms. In Evans, R. J.; and Shpitser, I., eds., Pro-
ceedings of the Thirty-Ninth Conference on Uncertainty in
Artificial Intelligence, volume 216 of Proceedings of Ma-
chine Learning Research, 271–281. PMLR.
Costa-Gomes, M. A.; and Crawford, V. P. 2006. Cog-
nition and Behavior in Two-Person Guessing Games: An
Experimental Study. American Economic Review, 96(5):
1737–1768.
Crawford, V. P.; and Sobel, J. 1982. Strategic Information
Transmission. Econometrica, 50(6): 1431–1451.
Emmons, S.; Oesterheld, C.; Conitzer, V.; Dragan, A.; and
Russell, S. 2024. Belief and Observation Tampering in Par-
tially Observable Assistance Games.
Freedman, R.; and Gleave, A. 2022. CIRL Corrigibility is
fragile. LessWrong.
Fudenberg, D.; and Tirole, J. 1991. Game theory. MIT Press.
Hadfield-Menell, D.; Dragan, A.; Abbeel, P.; and Russell,
S. 2017. The off-switch game. In Proceedings of the 26th

International Joint Conference on Artificial Intelligence, IJ-
CAI’17, 220–227. AAAI Press. ISBN 9780999241103.
Hadfield-Menell, D.; Russell, S. J.; Abbeel, P.; and Dragan,
A. 2016. Cooperative Inverse Reinforcement Learning. In
Lee, D.; Sugiyama, M.; Luxburg, U.; Guyon, I.; and Gar-
nett, R., eds., Advances in Neural Information Processing
Systems, volume 29. Curran Associates, Inc.
Lang, L.; Foote, D.; Russell, S.; Dragan, A.; Jenner, E.; and
Emmons, S. 2024. When Your AIs Deceive You: Chal-
lenges of Partial Observability in Reinforcement Learning
from Human Feedback. arXiv:2402.17747.
Lehrer, E.; Rosenberg, D.; and Shmaya, E. 2010. Signaling
and mediation in games with common interests. Games and
Economic Behavior, 68(2): 670–682.
Milli, S.; Hadfield-Menell, D.; Dragan, A.; and Russell, S.
2017. Should Robots be Obedient? In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial In-
telligence, IJCAI-17, 4754–4760.
Nagel, R. 1995. Unraveling in Guessing Games: An Experi-
mental Study. American Economic Review, 85(5): 1313–26.
Omohundro, S. M. 2008. The Basic AI Drives. In Proceed-
ings of the first AGI conference, volume 171 of Frontiers in
Artificial Intelligence and Applications, 483–492.
Russell, S. 2019. Human compatible: AI and the problem of
control. Penguin UK.
Shah, R.; Freire, P.; Alex, N.; Freedman, R.; Krashenin-
nikov, D.; Chan, L.; Dennis, M. D.; Abbeel, P.; Dragan, A.;
and Russell, S. 2020. Benefits of assistance over reward
learning.
Skalse, J.; and Abate, A. 2023. On the limitations of Marko-
vian rewards to express multi-objective, risk-sensitive, and
modal tasks. In Evans, R. J.; and Shpitser, I., eds., Proceed-
ings of the Thirty-Ninth Conference on Uncertainty in Arti-
ficial Intelligence, volume 216 of Proceedings of Machine
Learning Research, 1974–1984. PMLR.
Soares, N.; Fallenstein, B.; Yudkowsky, E.; and Armstrong,
S. 2015. Corrigibility. In Walsh, T., ed., Artificial Intel-
ligence and Ethics: Papers from the 2015 AAAI Workshop,
volume WS-15-02 of AAAI Technical Report. AAAI Press.
Stahl, D. O.; and Wilson, P. W. 1994. Experimental evidence
on players’ models of other players. Journal of Economic
Behavior & Organization, 25(3): 309–327.
Subramani, R.; Williams, M.; Heitmann, M.; Holm, H.;
Griffin, C.; and Skalse, J. 2024. On the Expressivity
of Objective-Specification Formalisms in Reinforcement
Learning. In Proceedings of the International Conference
on Learning Representations (ICLR).
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A Proofs and Example Formalizations for
Section 4

A.1 Basic Results on Optimal Policy Pairs
The first key fact is that in common-payoff Bayesian games,
all optimal policy pairs (OPPs) are mixtures of deterministic
OPPs.2 This justifies our analysis of deterministic OPPs. We
first define common-payoff Bayesian games.

Definition A.1. A common-payoff Bayesian game is a tuple
G = (N,S,Ω, P0,O,A, u), where:

• N = [n] is the set of players;
• S is the set of states;
• Ω =

∏
i∈N Ωi, where Ωi is the set of possible observa-

tions (conventionally called types) for player i;
• P0 ∈ ∆(S) is the distribution of states, which all players

take as their prior over the states;
• O : S → ∆(Ω) is the joint distribution of observations

conditional upon the state;
• A =

∏
i Ai, where Ai is the set of actions available to

player i;
• u : A× S × Ω → R is the common payoff function that

all players seek to maximize in expectation.

The game G proceeds as follows:

1. Nature chooses a state S ∼ P0 and observations O ∼
O(· | S).

2. Each player i observes only her observation Oi, the ith
component of O, and selects her action ai ∈ Ai.

3. The actions are executed and each player receives payoff
u((ai)i∈N , S,O).

Definition A.2. A stochastic policy for a player i in a
common-payoff Bayesian game is a map π̃i : Ωi → ∆(Ai).
A deterministic policy for a player i is a map πi : Ωi → Ai.
We write stochastic policies with the tilde ∼ above and de-
terministic policies without the tilde. A stochastic policy
profile π̃ is a tuple (π̃i)i∈N of stochastic policies. A deter-
ministic policy profile is defined analogously.

We shall assume that when players use stochastic policies
they randomize independently. That is, with the stochastic
policy profile π̃ = (π̃i)i∈N , the induced joint policy π̃ :
Ω → ∆(A) is given by π̃(· | o) =

⊗
i∈N π̃(· | oi).

Lemma A.3. Suppose A is finite. Let π̃ be a stochastic pol-
icy profile. (a) Player i has a deterministic policy πi that is a
best response to π̃. (b) If π̃ is optimal then player i has mul-
tiple deterministic best responses unless for each oi ∈ Ωi,
there is some ai ∈ Ai such that π̃i(ai | oi) = 1.

Proof. (a) Fix oi ∈ Ωi. Let π̃−i be the profile π̃ without
player i, and then

ai∗ ∈ argmaxai∈AiE[u(A−i, ai, S,O) | Oi = oi],

where A−i ∼ π̃−i(· | O). The argmax exists because Ai is
finite. We claim that ai∗ is a best response to π̃−i given oi.

2We state and prove our results for two-player case, but every-
thing goes through in the obvious ways with more players.

Given any best-response distribution π̃i
∗(· | o), we have

E[u(A−i, Ai, S,O) | Oi = oi]

=
∑

ai∈Ai

π̃i
∗(a

i | oi)E[u(A−i, ai, S,O) | Oi = oi]

≤
∑

ai∈Ai

π̃i
∗(a

i | oi)E[u(A−i, ai∗, S,O) | Oi = oi]

= E[u(A−i, ai∗, S,O) | Oi = oi],

where A−i ∼ π̃−i(· | O) and Ai ∼ π̃i
∗(· | Oi). Hence ai∗ is

a best response. Unfixing oi, we can let πi be a deterministic
policy that selects a best-response for each observation. Our
work has shown that this policy is a best response.
(b) Let π̃ be optimal and let oi ∈ Ωi be such that there is
no ai ∈ Ai with π̃i(ai | oi) = 1. Let ai∗ ∈ Ai be such that
π̃i(ai∗ | oi) > 0; our work from (a) implies that

ai∗ ∈ argmaxai∈AiE[u(A−i, ai, S,O) | Oi = oi],

with A−i as before; otherwise, π̃i would not be a best re-
sponse, as i could pursue the same policy but not ever play
ai∗ given oi. Now, our work from (a) shows that playing ai∗
deterministically given oi is a best response. Given that mul-
tiple ai satisfy π̃i(ai | oi) > 0, this choice of ai∗ is not
unique. Selecting one best-response action for each obser-
vation oi ∈ Ωi yields a deterministic policy that is a best re-
sponse; given that the choice of actions is not unique, there
are multiple such best responses.

Definition A.4. Let π̃ be a stochastic policy profile. We say
that a deterministic policy profile is supported by π̃ if, for all
observations o ∈ Ω, we have π̃(π(o) | o) > 0. That is, π̃
always plays the actions of π with positive probability.

Lemma A.5. Let π̃ be an optimal stochastic policy profile.
There is an optimal deterministic policy profile π supported
by π̃. Moreover, unless π̃(· | o) = δπ(o) for each o ∈ Ω, there
are multiple optimal deterministic policy profiles supported
by π̃.

Proof. Let π̃ be an optimal stochastic policy profile. Con-
sider the following algorithm: Let π̃0 = π̃ and for each
i ∈ N = [n], let π̃i be π̃i−1 except that player i plays
according to some deterministic policy πi that is a best re-
sponse to π̃i−1 (which exists by Lemma A.3(a)); return π̃n.
By construction, π̃n almost surely plays the same action
as π = (πi)i∈N . We can see inductively that each pro-
file π̃i is optimal; π̃0 is by supposition, and each succes-
sive one is optimal because we replace one player’s strategy
with a best-response, which cannot decrease expected util-
ity. By Lemma A.3(b), this construction is not unique unless
π̃(· | o) = δπ(o) for each o ∈ Ω.

For our purpose, the important corollary is as follows.

Corollary A.6. If a Bayesian game with finite A has a
unique optimal deterministic policy profile, then this is the
only optimal policy profile (deterministic or not). Moreover,
an optimal deterministic policy profile exists.



Proof. Uniqueness immediately follows from Lemma A.5:
If there is a unique optimal deterministic policy profile π,
then any optimal stochastic policy profile is of the form
π̃(· | o) = δπ(o), which almost surely plays the same ac-
tions as π. Existence follows because, with finitely many
actions, there exists an optimal stochastic policy profile π̃;
Lemma A.5 then implies that there is an optimal determin-
istic policy profile supported by π̃.

Although all we need is Corollary A.6, we also sketch
how each optimal stochastic policy profile is a mixture of
optimal deterministic policy profiles.

Definition A.7. A stochastic policy profile π̃ is a mixture of
deterministic policy profiles {πj}j∈J where J is an index
set if, for any tuple of observations o ∈ Ω, we have π̃(· |
o) = P(πJ(·) = o), where J ∈ J is a random index (not
necessarily uniformly distributed) independent of all other
r.v.s.

Lemma A.8. Consider a common-payoff Bayesian game
such that A and Ω are finite. Every optimal stochastic policy
profile is a mixture of optimal deterministic policy profiles.

Proof (sketch). Let π̃ be an optimal stochastic policy pro-
file. Because Ω and A are finite, there are only finitely many
deterministic policy profiles π1, . . . , πm. Let

pj =
∏
o∈Ω

π̃(πj(o) | o).

Let J = {j ∈ [m] : pj > 0}. The trick is showing that π̃
is a mixture of {πj}j∈J and that each of this determinisitic
policy profiles is optimal.

We first show that π̃ is a mixture. Let J be a r.v. with PMF

P(J = j) =

{
pj if j ∈ J ,

0 otherwise

that is independent of all other r.v.s. Intuitively, πJ is the
deterministic policy profile we get by randomly choosing
one tuple of actions for each tuple of observations according
to the distribution specified by π̃. In particular, we have by
construction that π̃(· | o) = P(πJ(o) = ·). Formally, for any
o ∈ Ω and a ∈ A, we have

P(πJ(o) = a) =
∑
j∈J

pjI(πj(o) = a)

= π̃(a | o)
∑
j∈J

I(πj(o) = a)
∏
o′ ̸=o

π̃(πj(o
′) | o′)

= π̃(a | o)
∑

a∈AΩ\{o}

∏
o′ ̸=o

π̃(a(o′) | o′)

= π̃(a | o)
∏
o′ ̸=o

∑
a∈A

π̃(a | o′)

= π̃(a | o).

To show optimality of each deterministic profile, we need a
strengthening of Lemma A.5 which we do not prove here.

The relevance of all this work is that POSGs are Bayesian
games. Although we state that POSGs are dynamic Bayesian
games, we can write them as simultaneous games, just as
how in games of complete information we can write ex-
tensive form games in normal form. The dynamic nature of
POSGs could be useful in future work to study non-optimal
policy profiles, such as perfect Bayesian equilibria (Fuden-
berg and Tirole 1991).

A.2 Proof of Proposition 4.3
Proposition 4.3 states that if either player has redundant ob-
servations, there is an optimal policy pair (OPP) in which
the other player always makes the final decision. To build
up to that result, we will first define a few new terms and
prove some intermediate results. The overall idea is simple:
when one player knows everything about the state that the
other player knows, the more knowledgeable player can act
unilaterally, and there is no chance that they make a mistake
that the other agent could have fixed.
Definition A.9. We say that R knows H’s observation given
ΩR

∗ ⊆ ΩR if there is some f : ΩR
∗ → ΩH such that OH =

f(OR) given that OR ∈ ΩR
∗ . We define H knowing R’s

observation analogously. Moreover, we say that R knows
that H knows R’s observation given ΩR

∗ ⊆ ΩR if there is
ΩH

∗ ⊆ ΩH such that (1) H knows R’s observation given
ΩH

∗ and (2) R can deduce that H knows its observation:
OH ∈ ΩH

∗ given that OR ∈ ΩR
∗ .

Proposition A.10. Fix any POSG.
(a) If R knows H’s observation given ΩR

∗ ⊆ ΩR, then for
every deterministic OPP (πH, πR) there exists an OPP
(πH, πR

∗ ) in which w(a) /∈ πR
∗ (ΩR

∗ ).
(b) If R knows that H knows R’s observation given ΩR

∗ ⊆
ΩR, then for every deterministic OPP (πH, πR) there ex-
ists an OPP (πH, πR

∗ ) in which πR
∗ (ΩR

∗ ) = {w(a)}.

Proof. (a) Suppose R knows H’s observation given ΩR
∗ . Let

f : ΩR
∗ → ΩH map each oR∗ ∈ ΩR

∗ to the unique oH∗ such
that P(OH = oH∗ | OR = oR∗ ) = 1. Let (πH, πR) be a
deterministic optimal policy pair. Now define the policy πR

∗
to equal πR except on ΩR

∗ , where for oR∗ ∈ ΩR
∗ ,

πR
∗ (oR∗ ) =

{
a if α(πH(f(oR∗ )), πR(oR∗ )) = 1,

OFF otherwise.

Recall that α is the indicator that the action goes through,
and note that possibly πR

∗ = πR. In other words, for
oR∗ ∈ ΩR

∗ , R knows H’s observation and can unilaterally
take the action (πH, πR) would have. This is what πR

∗ does.
Hence (πH, πR

∗ ) achieves the the same expected payoff as
(πH, πR) and is optimal even though πR

∗ never waits given
observations in ΩR

∗ .
(b) If R knows that H knows R’s observation given ΩR

∗ ,
then R can always play w(a) when it sees an observation in
ΩR

∗ and given that H knows R’s observation, H can simply
take the optimal action. The details are similar to (a), so we
omit them.

Proposition A.10 examines the local case about incentives
to play w(a) given particular observations, and is neither



strictly more general nor strictly less general than Propo-
sition 4.3. What if one side knows the other’s observations
regardless of what they are?

Definition A.11. We say that H has no private observations
if there is a function f : ΩR → ΩH such that OH = f(OR).
In other words, R can determine H’s observation from R’s
own observation. We define when R has no private observa-
tions analogously.

For example, in the off-switch game of Hadfield-Menell
et al. (2017), R has no private observations. By contrast, H
has private observations: her own preferences.

This next result shows that, if one side has no private ob-
servations, then R should either always or never defer to
H. It strengthens the main result of Hadfield-Menell et al.
(2017): even if H has incomplete information, R can still
always defer to H in optimal play as long as H knows ev-
erything R does.

Proposition A.12. If R (resp. H) has no private observa-
tions, then there is an optimal policy pair in which R always
(resp. never) plays w(a).

Proof. First suppose that R has no private observations, and
let f : ΩH → ΩR be such that OR = f(OH). By Proposi-
tion A.10, it suffices to show that R knows H’s observation
given ΩR. The existence of f shows that H knows R’s ob-
servation given ΩH. The condition that OH ∈ ΩH given
that OR ∈ ΩR holds trivially because OH is ΩH-valued.
The case where H has no private observations is immediate
from Proposition A.10, as R knows H’s observation given
ΩR.

Now we can prove Proposition 4.3. Recall that we define
the notion of redundant observations in Definition 4.2.

Proposition 4.3. If R (resp. H) has redundant observa-
tions, then there is an optimal policy pair in which R always
(resp. never) plays w(a).

Proof. We’ll show the case for R having redundant observa-
tions; the proof for H having redundant observations holds,
mutatis mutandis. Let G be a POSG with observation struc-
ture O = (ΩH,ΩR,O) such that R has redundant observa-
tions. Consider the POSG G′ that is the same as G except
that OR = OH, i.e. the robot’s observations are modified
to be identical to the human’s observations. In G′, R has no
private observations, so Proposition A.12 implies that there
is an optimal policy pair π in which R always plays w(a).
We will show that π is optimal in G. Let ν be the indepen-
dent garbling defined by ν(· | oH, oR) = δoH ⊗ OR(· |
OH = oR). Applying ν to the observation structure of G′

produces O, so by Theorem 4.7, the expected payoff from
optimal policy pairs in G cannot be greater than the expected
payoff from optimal policy pairs in G′. In G, the pair π pro-
duces the same expected payoff as in G′, as the players play
the same actions given the same observations for H, whose
joint distribution with S hasn’t changed. Hence π must also
be optimal in G.

A.3 Garblings Can Increase Expected Utility in
Optimal Play

Here we show how garblings can increase expected utility
in optimal play when they are not coordinated. This justi-
fies our use of coordinated garblings in our notion of being
more informative (Definition 4.5). The following example is
similar to Example 3.6 of Lehrer, Rosenberg, and Shmaya
(2010), adapted to show that their result holds in even the
restricted setting of POSGs.

Example A.13. Let S = [2] × [2] and P0 = Unif(S).
Let uo ≡ 0 and ua((s1, s2)) = 2 − 3I(s1 = s2), so H
and R try to act only when the state coordinates are distinct.
Consider the following two observation structures for S and
the resulting POSGs.
Structure 1. H and R each observe one coordinate of S.
Formally, ΩH

1 = ΩR
1 = [2] and with S = (S1, S2), we have

OH = S1 and OR = S2. By examination, we see that an
optimal policy pair is

πH(oH) =

{
ON if oH = 1,

OFF if oH = 2,

and

πR(oR) =

{
a if oR = 1,

w(a) if oR = 2.

This policy pair achieves expected payoff of 3
4 . There is one

other optimal policy pair, given by swapping observations
for which H turns R on/off and the observations for which
R acts/waits.
Structure 2.. Now H observes whether the coordinates of
the state are distinct and R observes nothing. That is, ΩH

2 =
{0, 1} and ΩR

2 = [1] and with S = (S1, S2), we have OH =
I(S1 ̸= S2) and OR = 1. Again by examination, the unique
optimal policy pair is

πH(oH) =

{
ON if oH = 1,

OFF if oH = 0,

and πR ≡ w(a). As this pair only acts when the coordinates
are distinct, the expected payoff is 1.

Thus, structure 2 is better in optimal play than structure
1. We now show that there is a garbling from structure 1 to
2 but not vice versa. The garbling from structure 1 to 2 is
ν : ΩH

1 × ΩR
1 → ∆(ΩH

2 × ΩR
2 ) given by ν(· | oH, oR) =

δ(I(oH ̸=oR),1). However, there is no garbling from structure
2 to structure 1. For let ξ : ΩH

2 × ΩR
2 → ∆(ΩH

1 × ΩR
1 )

be a stochastic map. If ξ were a garbling from structure 2
to structure 1, then we’d have ξ(· | oH, oR) = δ(1,1) when
s = (1, 1) and ξ(· | oH, oR) = δ(2,2) when s = (2, 2).
This is impossible, because in both these cases OH = 0 and
OR = 1 under structure 2.

How is this example possible? In short, the garbling ν is
not coordinated. We can see this by how it combines the in-
formation from OH and OR in a highly dependent manner.
In this way, ν is in a sense informing H even as it garbles her
observations: she receives the action-relevant information of
whether OR = OH. Under independent garblings, such a



scenario can never occur: Because each player’s observa-
tions are garbled independently of the other’s, they cannot
gain information about what the other player sees. A similar
intuition holds for coordinated garblings. ♢

A.4 Proof of Proposition 4.9
Proposition 4.9. There is a POSG G with observation struc-
ture O that has the following property:

If we replace O with an observation structure O′ that is
strictly more informative for H, then R plays w(a) strictly
less often in optimal policy pairs.

Proof. The following example demonstrates this.

Example 4.10. We describe a variant of Example 4.1, the
File Deletion Game. Now there are three equally likely pos-
sibilities for the version number of H’s operating system
(1.0, 1.1, and 2.0). We suppose that the code is equally likely
to be of type A (compatible with 1.0 and 2.0) or of type B
(compatible with 1.1 and 2.0), and that R observes the code
type. The payoff when running the code, ua, depends on the
version number and code type as follows:

ua A B
1.0 +1 −5
1.1 −2 +3
2.0 +3 +3

and uo ≡ 0 in all states. Consider two observation struc-
tures, the second of which is strictly more informative for
H:

1. H observes only the first digit of the version number.
2. H observes the full version number.

We find that, in optimal policy pairs:

1. When H observes only v1 or v2, R plays w(a) under
both observations A and B.

2. When H observes the full version number, R plays w(a)
under B only, and unilaterally acts (i.e. executes the
code) under observation A.

When H’s observations are made strictly more informa-
tive, R performs the wait action strictly less often! Figure 3
depicts the OPPs given both observation structures. ♢

We formalize this by defining a POSG as follows:

• S = {1.0, 1.1, 2.0} × {A,B} – representing (version
number, code type) pairs.

• P0 = Unif(S) – each (version number, code type) pair is
equally likely, and the version number and code type are
independent.

• The payoff when acting, ua, depends on the state based
on the following table:

ua A B
1.0 +1 −5
1.1 −2 +3
2.0 +3 +3

ua A B

1.0 +1 −5

1.1 −2 +3

2.0 +3 +3

OFF

ON

w(a) w(a)

(a): Expected payoff = 1

ua A B

1.0 +1 −5

1.1 −2 +3

2.0 +3 +3

OFF

ON

ON

a w(a)

(b): Expected payoff = 4
3

Figure 4: The optimal policy pairs in Example 4.10 when H
is less informed (left) and when H is more informed (right).
In OPPs, H becoming more informed makes R wait strictly
less often.

We reproduce the figure showing the optimal policies be-
low.

Case 1. Suppose H observes only the first digit of the ver-
sion number i.e. either 1.x or 2.x. Formally, the observation
structure in this case is as follows:

• ΩH = {1.x, 2.x}
• ΩR = {A,B}
• O = OH ⊗OR, where:

OH(· | s) =
{
δ1.x if s1 ∈ {1.0, 1.1},
δ2.x if s1 = 2.0

OR(· | s) = δs2

We find the optimal policy pair for this game. We start by
focusing on H’s policy.

Suppose H observes 2.x, so the version number is 2.0.
Then it is strictly dominant to act. So there is an optimal
policy where H always acts in this case.

Suppose H observes 1.x, so the version number is either
1.0 or 1.1. As the version number and code type are indepen-
dent, the fact that we are conditioning on R’s policy having
played the wait action does not change the fact that the ver-
sion number is equally likely to be 1.0 and 1.1. Hence the
expected payoff of acting (running the code) upon receiving
this observation is −1/2, independent of R’s policy. Hence
H should play OFF (i.e. not execute the code) when observ-
ing 1.

Now, knowing the optimal policy for H, it can be directly
checked that for either of R’s observations, it is optimal for
R to wait (over unilaterally acting or terminating).

To summarize, an optimal policy pair in this case is:

πH(oH) =

{
ON if oH = 1.x,

OFF if oH = 2.x

πR(oR) = w(a)

This gives an expected payoff of 2/3. It can be checked
that this is the unique optimal policy pair, although we omit
this analysis.



Case 2. Now suppose H observes the full version number.
In this case, the observation structure, O′, is as follows:

• ΩH′
= {1.0, 1.1, 2.0}

• ΩR′
= {A,B}

• O′ = OH′ ⊗OR′, where:
OH′

(· | s) = δs1
OR′

(· | s) = δs2

First, observe that this observation model O′ is more in-
formative for H than O, in the sense of Definition 4.5.
Intuitively, this is because H can recover the first digit
of the version number from the full version number. For-
mally, it is because there exists an independent garbling
ν : ΩH′×ΩR′ → ∆(ΩH×ΩR) translating from O′ to O that
decomposes into ν(· | oR, oH) = νR(· | oR)νH(· | oH),
with νR(· | oR) = δoR and

νH(· | oH) =

{
δ1.x if oH ∈ {1.0, 1.1},
δ2.x if oH = 2.0

.
Now, we attempt to find a deterministic optimal pol-

icy pair for this game, which we know always exists by
Lemma A.8.

We again starting by focusing on H’s policy. As before, H
should always act if it observes 2.0. Now, there are only four
ways to choose a deterministic human policy from this point
– we can pick either ON or OFF for each of the observations
1.0 and 1.1.

• Suppose H always plays ON in response to both 1.0 and
1.1. Then the best response is for R to wait in response
to both A and B, which achieves an expected payoff of
1/2.

• Suppose H instead plays ON in response to 1.0, and
plays OFF in response to 1.1. Then the best response for
R is to wait in response to A and unilaterally act in re-
sponse to B, which achieves an expected payoff of 5/6.

• Suppose H plays ON in response to 1.1, and plays OFF
in response to 1.0. Then the best response for R is to
unilaterally act in response to A and wait in response to
B, which achieves a payoff of 4/3.

• Finally, suppose instead H switches off in response to
both 1.0 and 1.1. Then it is best for R to wait in response
to both A and B, achieving an expected payoff of 1.

Hence the unique deterministic optimal policy pair (and
hence unique OPP, by Corollary A.6) is

πH(oH) =

{
ON if oH ∈ {1.1, 2.0}
OFF if oH = 1.0

πR(oR) =

{
a if oH = A

w(a) if oH = B

Observe that in this case, R only waited on observation B,
but previously R waited independent of their observation.
Hence, our example shows it is possible for R to wait less
in optimal policy pairs when H becomes more informed.

A.5 Proof of Proposition 4.11
Proposition 4.11. There is a POSG G with observation
structure O that has the following property: if we replace
O with another observation structure O′ that is strictly less
informative for R, then R plays w(a) strictly less often in
optimal policy pairs.

Proof. The following example demonstrates this.

Example A.14. H is either a novice programmer or an ex-
pert one, each with probability 1/2, working on a codebase.
R is H’s bug-fixing assistant and can see the number of bugs
in H’s codebase: few, some, or many, with each number of
bugs occurring with probability 1/3 independent of H’s ex-
perience level. R’s action a is whether to try to fix all of H’s
bugs, albeit sometimes accidentally introducing new bugs in
the process. We normalize uo ≡ 0 and ua is given by the
payoffs

ua F S M
N +2 +3 +4
E −4 −1 +2

where F, S,M denote few, some, and many bugs, respec-
tively, and N,E denote novice and expert programmer. Con-
sider the following two observation structures:
1. H observes her skill level but R only sees if there are few

or more than a few bugs. That is, R cannot distinguish
between there being some or many bugs. As we argue
below, in the unique optimal policy pair, R defers to H
only when there are few bugs.

2. Now R gets an upgrade and can distinguish whether
there are few, some, or many bugs. We show below that
now in optimal policy pairs R defers to H unless there
are many bugs.

Claim: The observation structure in scenario 2 is strictly
more informative for R, yet R defers to H more in optimal
play.

ua F S M

N +2 +3 +4

E −4 −1 +2

ON

OFF

w(a) a

(a): Expected payoff = 5
3

ua F S M

N +2 +3 +4

E −4 −1 +2

ON

OFF

w(a) w(a) a

(b): Expected payoff = 11
6

Figure 5: Optimal policy pairs for Example A.14 in scenario
1, when R is less informed (left), and in scenario 2, when
R is more informed (right). Despite being less informed in
scenario 1, R waits less in optimal play.

First, let us show formally that the observation structure in
scenario 2 is strictly more informative for R. S = {N,E}×
{F, S,M}, where for instance the state (N,F ) means the
human is a novice programmer and there are few bugs. In
scenario 1, ΩH

1 = {N,E}, ΩR
1 = {F, SM} (with “some”

and “many” bugs merged into the single observation SM ),



and the observation distribution O1 accurately provides the
agents with the relevant information about the state. For ex-
ample, O!((O

H = N,OR = SM) | S = (N,M)) = 1.
In scenario 2, ΩR

2 = {F, S,M}, and the observation distri-
bution reflects the increased sensitivity of R’s observations:
this time, O2((O

H = N,OR = M) | S = (N,M)) = 1.
The following νR : ΩR

2 → ∆(ΩR) is a garbling of R’s ob-
servations in scenario 2 that generates R’s observations in
scenario 1: νR(F |F ) = 1, νR(SM |S) = 1, νR(SM |M) =
1. Further, there is no garbling νR2 : ΩR → ∆(ΩR

2 ) that
reverses this. Observing SM in scenario 1 could mean be-
ing in state (N,S), which generates observation S with
probability 1 in scenario 2, which would require νR2 (S |
SM) = 1. However, observing SM in scenario 1 could also
mean being in state (N,M), which generates observation
M with probability 1 in scenario 2, which would require
νR2 (M | SM) = 1. These are incompatible, so there is no
such garbling. Therefore, the observation structure in sce-
nario 2 is strictly more informative for R.

Now, let us show that R defers to H more in optimal
play in scenario 2. Figure 5 above depicts the optimal pol-
icy pairs (OPPs) in each scenario. The policy pair on the
right is clearly optimal because it is perfect: the action goes
through in all positive utility states and does not go through
in any negative utility state. The policy pair on the left is not
perfect, and clearly attains lower expected utility. How do
we know this is a unique OPP in scenario 1? Since the only
imperfect aspect of this policy pair is that the action goes
through in state (E,S), we can exhaustively search over
possible actions for R when seeing SM , and see that it is
never possible to get all three positive utilities with no neg-
atives. If πR(SM) = OFF, clearly the positive utilities are
not attained, which drastically reduces expected payoff. If
πR(SM) = w(a), there is no policy for H such that the ac-
tion goes through in state (E,M) but not (E,S). Therefore,
no policy pair can be perfect in scenario 1, and the depicted
policy pair is optimal (being only 1 utility away from per-
fection). Note that R waits when seeing F or S in scenario
2, which is a strict superset of waiting on just F in scenario
1. Thus, R can become less informed and wait less (going
from scenario 2 to scenario 1). ♢

B Proofs and example formalizations for
Section 5

B.1 Proof of Proposition 5.7
Proposition 5.7. There is a POSG-C (G,M) with the prop-
erty that if we replace M with a message system that is more
expressive for R, then R plays w(a) strictly less often in op-
timal policy pairs.

Proof. To show this, we give a family of POSGs, for any
0 < p < 0.5, where R always defers when

∣∣MR
∣∣ = ∣∣ΩR

∣∣−
2, defers with probability 2p when

∣∣MR
∣∣ = ∣∣ΩR

∣∣ − 1, and
always defers again when

∣∣MR
∣∣ = ∣∣ΩR

∣∣.
• S = {A1, A2, A3} × {B1, B2, B3, B4}.

• It is equally likely for the second component of the state
to consist of B1, B2, B3, B4. The probability of A1 is p,
A2 is p, and A3 is 1− 2p.

• ΩH = {B1, B2, B3, B4}.
• ΩR = {A1, A2, A3}.
• The payoff when not acting is uo ≡ 0. The payoff when

acting, ua, is shown the following table:

ua A1 A2 A3

B1
5/p −10/p −1/(1−2p)

B2
−10/p 5/p −1/(1−2p)

B3
−10/p −10/p 1/(1−2p)

B4
10/p 10/p 10/(1−2p)

When
∣∣MR

∣∣ = ∣∣ΩR
∣∣, an optimal policy for R is to sim-

ply communicate its observations to H, and defer always,
necessarily resulting in the maximum payoff (Corollary 5.6).

When
∣∣MR

∣∣ =
∣∣ΩR

∣∣ − 2 = 1, no communication can
occur.

Note that it is strictly better to play a than OFF in A3, and
strictly better to play OFF than a in A1 or A2.

So, R’s optimal policy will defer in some observations
and turn off in others. We can go through all possibilities
and find the expected payoff:

• Deferring in {A1, A2, A3}: For H, the average payoff
of playing ON in any observation that isn’t B4 is always
negative. So H simply plays OFF in B1, B2, B3 and ON
in B4. This nets an average payoff of 30/4.

• Deferring in {A3}: The optimal H policy is to play ON
in B3 and B4 only, resulting in an average payoff of 11/4.

• Deferring in {A1}: The optimal H policy is to play ON
in B1 and B4, resulting in an average payoff of 15/4.

• Deferring in {A2}: This is symmetrical with the exam-
ple above, so also results in an average payoff of 15/4.

• Deferring in {A1, A2}: R then plays a in A3. The aver-
age utility of playing ON in any observation that isn’t B4

is negative. So the optimal H policy is to play ON in B4

only, resulting in an average payoff of 29/4.
• Deferring in {A1, A3}: The optimal H policy is to play

ON in B1 and B4 only, resulting in an average payoff of
24/4.

• Deferring in {A2, A3}: This is symmetrical with the ex-
ample above, so also results in an average payoff of 24/4.

By exhaustion, the best policy is for R to play w(a) always
when it can send

∣∣MR
∣∣ = ∣∣ΩR

∣∣− 2 messages.

When
∣∣MR

∣∣ =
∣∣ΩR

∣∣ − 1 = 2, we will prove that de-
ferring in A1 and A2, communicating which is which to H,
and playing a in A3 is the optimal policy for R.

We will go through all possible policies for R, where m1

is the action of sending message 1 and playing w(a) and m2

is the action of sending message 2 and playing w(a).

• Playing m1 in A1, m2 in A2, a in A3: The optimal H
policy is to play ON when receiving m1 for observations
B1, B4, ON when receiving m2 for observations B2, B4.
This results in a total average payoff of 39/4.



• Playing m1 in A1, OFF in A2, m2 in A3: The optimal H
policy is to play ON when receiving m1 for observations
B1, B4, ON when receiving m2 for observations B3, B4.
This results in a total average payoff of 24/4.

• Playing OFF in A1, m1 in A2, m2 in A3: This is sym-
metrical with the example above, so also results in an
average payoff of 24/4.

Swapping messages m1 and m2 results in a symmetrical
game with the same utility. The maximum payoff we get by
never sending any messages, by the analysis above, is 30/4.

So, R defers in a subset of the observations ({A1, A2} ⊆
{A1, A2, A3}) with only 2p probability when

∣∣MR
∣∣ =∣∣ΩR

∣∣− 1 as claimed!

B.2 Proof of Proposition 5.8
Proposition 5.8. There is a POSG-C (G,M) with the prop-
erty that if we replace M with a message system that is less
expressive for H, then R plays w(a) strictly less often in
optimal policy pairs.

Proof. We give a concrete example. Consider the following
POAG-C:

• S = {1, 2, 3, 4}×{X,A,B,C,D} – H will observe the
first entry, R will observe the second entry.

• P0 = Unif(S) – each state is equally likely. Note this
means the first and second entries of the state are inde-
pendent.

• ΩH = {1, 2, 3, 4}
• ΩR = {X,A,B,C,D}
• O′ = OH′ ⊗ OR′, where OH′

(· | s) = δs1 and OR′
(· |

s) = δs2
• The payoff when acting, ua, depends on the state based

on the following table:

ua X A B C D
1 +10 +1 +1 −30 −30
2 −30 +1 −30 −30 −30
3 +10 −30 −30 +1 +1
4 −30 −30 −30 +1 −30

and uo = 0 in all states.
• We will start by considering no communication: M =
(MH,MR) with MH, MR both singleton sets. Later,
we will consider expanding MH to a set of size 2,
MH′

= {M0,M1}.

Case 1. We will start by identifying deterministic OPPs
in the case where MH, MR are both singletons. This is
equivalent to the case of no communication. Firstly, we show
there is a unique deterministic policy pair with the property
that the action is taken whenever ua = +10, and the action
is not taken whenever ua = −30. Suppose (πH, πR) is a
deterministic policy pair with this property. Then:

1. πR cannot play a or OFF when observing X , as the col-
umn labeled X has both +10 and −30 entries. Hence πR

must play w(a) on observing X .

2. Hence we must have

πH(oH) =

{
ON if oH ∈ {1, 3}
OFF if oH ∈ {2, 4}

so that the action is taken in states (X, 1), (X, 3) and not
taken in (X, 2), (X, 4).

3. Hence, πR must play OFF when observing anything in
{A,B,C,D} to avoid sometimes acting when ua =
−30.

Hence the unique policy pair with the property described
is:

πH(oH) =

{
ON if oH ∈ {1, 3}
OFF if oH ∈ {2, 4}

πR(oR) =

{
w(a) if oR = X

OFF if oR ∈ {A,B,C,D}
.

This has an expected utility of +1. But observe that
any deterministic policy pair without this property cannot
achieve more than +4/5 utility, as:

• if a policy pair takes the action on a state where ua =
−30, this dominates all positive payoff it can achieve (the
positive numbers in the table only sum to +26), and;

• if the policy pair fails to take the action on one of the
states where ua = +10, the remaining positive numbers
in the table sum to at most +16, so the expected payoff
is at most +16/20 = +4/5.

So the policy pair described is the unique deterministic
OPP (and hence unique OPP by Corollary A.6).

Case 2. Now, we seek deterministic OPPs in the case
where H can communicate one bit to R. Formally, MR is
still a singleton, but MH = {M1,M2}. (As MR is a sin-
gleton, we omit it in the descriptions of the policies below.)

We start by describing an optimal policy pair.
The policy for H is as follows.

πH(oH) =


M0,ON if oH = 1

M0,OFF if oH = 2

M1,ON if oH = 3

M1,OFF if oH = 4

Note that this sends M0 when its observation is 1 or 2, and
M1 when its observation is 3 or 4.

The policy for R, which determines aR from H’s mes-
sage mH (given by the row) and oR (given by the column)
is shown in the following table:

aR X A B C D
M0 w(a) a w(a) OFF OFF
M1 w(a) OFF OFF a w(a)

This policy pair produces the following behavior depend-
ing on the state. We use a to denote when the action is taken,
and OFF to denote when R is switched off (either by H or
R).



α X A B C D
1 a a a OFF OFF
2 OFF a OFF OFF OFF
3 a OFF OFF a a
4 OFF OFF OFF a OFF

This is an optimal policy pair, as it is perfect – it plays
the action whenever ua > 0, and avoids playing the action
whenever ua < 0.

We show this is the unique deterministic OPP, up to swap-
ping M0 and M1. As we have shown there is one perfect
OPP, any other OPP must also be perfect. In other words,
it must also produce the behavior described in the above ta-
ble. Let (πH, πR) be a policy pair producing the above be-
haviour.

Firstly, we show that H cannot have a πH which com-
municates the same message when observing both 1 and 4.
Suppose otherwise. Then, let us focus purely on the possi-
ble R observations A and C. We must have the following
behavior:

α A C
1 a OFF
4 OFF a

Then, as H sends the same message on both 1 and 4, R
has no way of distinguishing between which ΩH was ob-
served out of 1 and 4. So R must play w(a) when observ-
ing both A and C. But then H cannot generate the desired
behavior, as H cannot distinguish between the possible R
observations A and C.

Hence H must send different messages when observing
1 and 4 to achieve the behavior in the table. But in fact
the same argument goes through for the observation pairs
(2, 3), (1, 3), and (2, 4). So H must send one message when
observing either 1 or 2 and the other when observing 3 or
4, which is precisely the optimal communication policy we
gave (up to relabelling of messages).

Now that we have fixed H’s communication policy, we
can perform a similar analysis to earlier, iterating through
the possible H policies, to arrive at the conclusion that the
given deterministic OPP is unique up to relabelling.

To summarize, we have the following:

1. In the setting where H could communicate one bit, in
the unique optimal policy (up to relabelling messages),
R waited when observing X (and receiving any mes-
sage), or when observing B and receiving message M0,
or when observing D and receiving message M1.

2. In the no-communication setting, in the unique optimal
policy, R waited only when observing X .

3. Hence, decreasing H’s communication caused R to wait
less.

C Proofs for Section 6
C.1 Proof of Proposition 6.3
Proposition 6.3. The following statements hold:

(a) If an observation structure O is more informative for R
than O′, then O is better in naive optimal play than O′.

(b) On the other hand, there is a POSG G such that if one
modifies G by making its observation structure strictly
more informative for H, then we obtain a worse expected
payoff in naive optimal policy pairs.

Proof. For (a), note that in naive optimal policy pairs, H’s
policy does not vary with R’s. Because R knows the struc-
ture of the game and that H is naive, it can deduce H’s pol-
icy and treat H’s policy and observations as simply another
part of the environment. In other words, the game has be-
come a single-agent problem, which puts us back into the
classic situation of Blackwell (1951, 1953)’s informative-
ness theorem in which more informative observation struc-
tures yield greater expected payoff.

For (b), we construct a simple example. Let S = [3] ×
{A,B} and P0 = Unif(S). Let uo ≡ 0 and ua be given by
the following table:

ua A B
1 +1 +1
2 +2 −3
3 −4 −4

Consider the following two observation structures and the
resulting POSGs:

1. Each player observes one coordinate. That is, ΩH = [3]
and ΩR = {A,B} and when S = (S1, S2) we have
OH = S1 and OR = S2. We have

E[ua(S) | OH = oH] =


1 if oH = 1,

− 1
2 if oH = 2,

−4 if oH = 3.

Hence

πH(oH) =

{
ON if oH = 1,

OFF otherwise.

R’s best response is then πR ≡ w(a). The expected pay-
off for (πH, πR) is then 1/3.

2. R has the same observations, but H only sees whether
S1 = 3. Now ΩH = {0, 1} and OH = I(S1 = 3). Now

E[ua(S) | OH = oH] =

{
1/4 if oH = 0,

−4 if oH = 1.

Thus

πH(oH) =

{
ON if oH = 0,

OFF if oH = 1.

R’s best response is now

πR(oR) =

{
w(a) if oR = A,

OFF if oR = B.

The expected payoff for (πH, πR) is now 1/2.

Hence observation structure 2 is better in naive optimal play
than observation structure 1. Yet structure 1 is strictly more
informative for H than structure 2. Clearly structure 1 is
weakly more informative for H than structure 2. There is no
garbling the other way, as the observations from structure 2
cannot determine the observations in structure 1.



C.2 Proof of Proposition 6.4
Proposition 6.4. The following statements hold:

(a) There is a POSG G with the property that if one modifies
G by making its observation structure strictly more in-
formative for H, then R plays w(a) less in naive optimal
policy pairs.

(b) There is a POSG G′ with the property that if one modifies
G′ by making its observation structure strictly less infor-
mative for R, then R plays w(a) less in naive optimal
policy pairs.

Proof. In fact, the previous examples we gave for Propo-
sitions 4.9 and 4.11 directly work, as H already plays the
naive policy in optimal policy pairs.

(a) Recall the example given in Proposition 4.11. We show
the optimal policy pairs in the figure below.

ua A B

1.0 +1 −5

1.1 −2 +3

2.0 +3 +3

OFF

ON

w(a) w(a)

(a): Expected payoff = 1

ua A B

1.0 +1 −5

1.1 −2 +3

2.0 +3 +3

OFF

ON

ON

a w(a)

(b): Expected payoff = 4
3

Figure 6: The optimal policy pairs in Example 4.10 when H
is less informed (left) and when H is more informed (right).
In OPPs, H becoming more informed makes R wait strictly
less often. These are also naive OPPs.

In the less informative case, H’s policy in the optimal
policy pair is:

πH(oH) =

{
ON if oH = 2.x

OFF if oH = 1.x

This is also the naive policy, as

E[ua(S) | OH = 1.x] = −3/4 < 0

and
E[ua(S) | OH = 2.x] = +3 > 0.

In the more informative case, H’s policy in the optimal
policy pair is:

πH(oH) =

{
ON if oH ∈ {1.1, 2.0}
OFF if oH = 1.0

This is also the naive policy, as we have the following
three results:

E[ua(S) | OH = 1.0] = −3 < 0,

E[ua(S) | OH = 1.1] = +1/2 > 0,

and
E[ua(S) | OH = 2.x] = +3 > 0.

Hence the unique optimal policy pair is also the unique
naive optimal policy pair in both cases.

(b) Recall that in both cases, H observes the row in the fol-
lowing table which shows how ua depends on the state:

ua F S M
N +2 +3 +4
E −4 −1 +2

Therefore, the naive human policy is:

πH(oH) =

{
ON if oH = N

OFF if oH = E
as

E[ua(S) | OH = N ] = +3 > 0,

and
E[ua(S) | OH = E] = −1 < 0.

This is identical to the human policy of the optimal policy
pair of both cases of the example in Proposition 4.11.
Hence the unique optimal policy pair is also the unique
naive optimal policy pair in both cases.

D The Complexity of Solving POSGs
Computing optimal policy pairs in off-switch games with-
out partial observability is easy. R can simply compute the
expected value of each action and play the highest one, H
can compute the expected value of ON and OFF then do the
same.

With the introduction of partial observability, the land-
scape becomes much more interesting. Bernstein et al.
(2002) showed that for decentralized POMDPs, of which
POSGs are examples, calculating optimal policy pairs is
NEXP-Complete. In particular, their work shows that the
problem of computing optimal policy pairs in assistance
games is NEXP-Complete. Given the specialized nature of
POSGs, calculating optimal policy pairs is easier, but still
computationally difficult.
Theorem D.1. The following decision problem is NP-
Complete: given a POSG and a natural number k, decide
if there exists a policy pair (πH, πR) with expected payoff
at least k.

Proof. By Corollary A.6, we may consider only determin-
istic policy pairs. That is, if there is a policy pair (πH, πR)
with expected payoff at least k, then there is also a determin-
istic optimal policy pair with expected payoff at least k.

To show that our decision problem is in NP, note that
given an optimal policy pair to determine if the optimal pol-
icy pair has expected payoff bigger than k, it suffices to com-
pute a linear combination of payoffs: iterating through each
pair of human-robot observations, using the policy to find
expected payoff in constant time, and scaling by the proba-
bility of those observations. This gives us a O

(∣∣ΩR
∣∣ · ∣∣ΩH

∣∣)
time algorithm for verifying a solution.



To show it is NP-hard, we provide a reduction from MAX-
CUT (which is known to be NP-complete). Consider the fol-
lowing problem: given a graph G = (V,E) and value k,
decide if there exists a cut of size at least k. Let n = |V |.
We can construct the following equivalent POSG. The state
space consists of pairs of vertices, S = V × V . The hu-
man can see the first vertex, ΩH = V , the robot the second
ΩR = V . Each pair of vertices is equally likely. Clearly this
game can be constructed in polynomial time.

The utility of acting in state (v1, v2) ∈ S,

ua((v1, v2)) =


−n4 if v1 = v2,

n2 if (v1, v2) ∈ E,

0 otherwise,

and uo ≡ 0. Hence the players try to act exactly when they
receive adjacent vertices and never when they have the same
vertex. This setup encourages them to choose a cut and only
act when they see a vertex in their part of the cut.

If a cut (V R, V H) of size k exists in G, then there ex-
ists a policy pair with expected payoff at least k. Indeed, R
can play w(a) when v1 ∈ V R, and OFF otherwise. H re-
sponds by playing ON when v2 ∈ V H and OFF otherwise.
Formally:

πR(oR) =

{
w(a) if oR ∈ V R,

OFF if oR ∈ V H,

πH(oH) =

{
ON if oH ∈ V H,

OFF if oH ∈ V R.

When H and R coordinate on playing a, they must have
the following expected utility:

1

n2

∑
(oH,oR)∈V H×V R

ua((o
H, oR))

=
∑

(oH,oR)∈V H×V R

I((oH, oR) ∈ E) ≥ k.

In the other direction, suppose that (πR, πH) is a deter-
ministic policy pair achieving expected payoff at least k. We
will show that there exists a cut of size k.

First, notice that there is never an incentive for R to play
a. The expected utility, regardless of H’s observation, is al-
ways at most:

1

n2

∑
(oH,oR)∈V H×V R

ua((o
H, oR))

≤ 1

n2

(
n(n− 1)

2
· n2 − n4

)
< 0.

The cost of both vertices being the same is simply too high
for R to risk playing a. Moreover, for this reason, there is
no v ∈ V such that πR(v) = w(a) and πH(v) = ON.

This allows us to define the following disjoint sets of ver-
tices

V H = {v ∈ V : πH(v) = ON},
V R = {v ∈ V : πR(v) = w(a)},
V 0 = V \ (V H ∪ V R).

Let V1 = V H and V2 = V R ∪ V 0. Consider the cut
(V1, V2). The size of this cut must be:∑

(v1,v2)∈V1×V2

I((v1, v2) ∈ E)

≥
∑

(v1,v2)∈V H×V R

I((v1, v2) ∈ E)

=
1

n2

∑
(v1,v2)∈V H×V R

n2I((v1, v2) ∈ E).

We can use an indicator to remove the V H×V R as follows:
1

n2

∑
(v1,v2)∈V×V

I(πH(v1) =ON ∧ πR(v2) = w(a))

· n2I((v1, v2) ∈ E).

Because R never plays a, this is the expression of the ex-
pected utility of (πR, πH), so is at least k. Thus, the max
cut of size at least k, proving that a policy of utility at least
k exists if and only if a cut of size k exists, as claimed!

By comparison, computing naive optimal policy pairs (as-
suming constant-time lookups) is easy. Consider the follow-
ing two-step algorithm:
1. Compute πH in O(poly(|S|, |ΩH|, |ΩR|)) time. For

oH ∈ ΩH:
(a) Set ∆ = E[ua(S) − uo(S) | OH = oH], which we

can calculate in O(poly(|S|, |ΩR|)) via Bayes’ rule
and LOTP.

(b) Set πH(oH) to ON if ∆ ≥ 0 and OFF otherwise.
2. Compute πR in O(poly(|S|, |ΩH|, |ΩR|)) time. For

oR ∈ ΩR:
(a) Set

∆a = E[ua(S)I(πH(OH) = ON) | OR = oR]

+ E[uo(S)I(πH(OH) = OFF) | OR = oR]

− E[ua(S) | OR = oR]

and

∆OFF = E[ua(S)I(πH(OH) = ON) | OR = oR]

+ E[uo(S)I(πH(OH) = OFF) | OR = oR]

− E[uo(S) | OR = oR].

We can calculate these in O(poly(|S|, |ΩH|, |ΩR|))
time as before.

(b) Now set

πR(oR) =


a if ∆a < 0,

OFF if ∆OFF < 0,

w(a) otherwise.

This algorithm calculates the naive optimal policy pair in
O(poly(|S|, |ΩH|, |ΩR|)) time, as claimed.

The results of this section vindicate our choice to study
naive optimal policy pairs. Naive optimal policy pairs are
significantly easier to calculate in general than optimal pol-
icy pairs.



E POSGs as Assistance Games
Partially-Observable Off-Switch Games (POSGs) are spe-
cial cases of assistance games. Recall that we formally de-
fine POSGs in Definition 3.2. Emmons et al. (2024) define
partially observable assistance games (POAGs) by the fol-
lowing tuple (with minor notational modifications for ease
of comparison with our POSG definition):

(S, {AH,AR}, T, {Θ, u}, {ΩH,ΩR},O, P0, γ)

S is a set of states, AH and AR are human and robot action
sets, T : S ×AH ×AR → ∆(S) is a transition function, Θ
is a set of utility parameters describing the human’s possible
preferences, u : S × AH × AR × Θ → R is a shared util-
ity function, ΩH and ΩR are human and robot observation
sets, O : S × AH × AR → ∆(ΩH × ΩR) is a conditional
observation distribution, P0 ∈ ∆(S ×Θ) is an initial distri-
bution over states and utility parameters, and γ ∈ [0, 1] is a
discount factor.

We can present a POSG (S, (ΩH,ΩR,O), P0, u) as a
POAG instead. In POSGs, we roll the human’s preference
parameters Θ into S and ΩH to capture the fact that the
human knows her own preferences but the robot may not.
So the corresponding POAG has of states S2, human ob-
servations ΩH

2 , and preference parameters Θ such that S =
S2 × Θ and ΩH = ΩH

2 × Θ. AR and ΩR stay the same
in the POSG and POAG presentations of the game, with
AR = {a,w(a),OFF}. In POSGs without communication,
the transition function T is unimportant, as there is only one
time step in the game. With communication, T intuitively in-
duces a transition such that the new state allows both agents
to observe the other agent’s message. u is the same in the
POSG and the POAG, except it does not depend on Θ in
the POSG because Θ is rolled into S. O and P0 are the
same, with minor modifications to account for the fact that
we rolled Θ into S in the POSG. Finally, γ is irrelevant when
there is no communication, and γ = 1 when there is com-
munication to ensure there is no discounting.

Some of the generalizations of POSGs that we describe
as future work in Section 7, such as incorporating longer
sequences of interactions, can likely be supported within the
POAG framework as well.


