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Abstract

What algorithmic principles drive the emergence of communication in multi-agent learning environ-
ments? While prior work on emergent communication has examined the properties and evolution of
emergent languages, the fundamental question of which decentralized learning algorithms provably enable
language emergence remains largely unexplored. To address this, we introduce an online variant of the
Lewis signaling game, where a sender and receiver must encode and decode a sequence of generated states
cooperatively. The emergence of a shared language is captured by a notion of communication regret in
this environment — the regret experienced by the sender and receiver relative to the best synchronized
encoder-decoder pair. We show that sender stability (i.e., low switching regret) and receiver adaptivity (i.e.,
low tracking regret) are sufficient conditions for emergent communication, achieving communication regret
of O

(
T 2/3

)
and O

(
T 1/2

)
when states are generated adversarially or stochastically, respectively. Beyond

these sufficient conditions, we demonstrate that minimally tailoring these algorithms for synchronized
multi-agent learning significantly accelerates communication, reducing adversarial communication regret
to O

(
T 1/2

)
.

1 Introduction
One of the most fascinating phenomena in multi-agent systems is the emergence of language among interacting
agents, without any pre-specified language or conventions. While human language has evolved over millennia,
advances in machine learning and AI now offer us a front-row seat for observing how language may emerge in
multi-agent learning environments. This is studied through the field of emergent communication Foerster
et al. [2016], Lazaridou et al. [2016], Lazaridou and Baroni [2020], which investigates how language and
communication arise as a byproduct of decentralized training algorithms in cooperative multi-agent settings.
Much of the past work in this space has focused on the properties of languages that can emerge as byproducts
of ad hoc choices of the training algorithms. However, a key foundational question has remained largely
unexplored:

What features of the training algorithms lead to the emergence of communication? And what
classes of learning algorithms provably lead to emergent communication?

This is precisely the question we address in this work. To ground our approach in mathematical foundations,
we introduce an online variant of the canonical Lewis signaling game Lewis [2008] — a widely used model
of cooperative games used in the study of emergent communication. In this repeated cooperative game, a
sender seeks to encode a state that is generated by nature (whether adversarially or stochastically) and a
receiver seeks to decode this message in order to reconstruct the original state. Both agents are rewarded for
accurate reconstruction of the state. In this formalism, the emergence of communication is now captured by
the regret these agents incur relative to the best synchronized encoder-decoder pair of policies in hindsight.
We call this their communication regret. This frames our goal as characterizing classes of learning algorithms
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Existing Generic Algorithms:
Switching vs Tracking Regret Specialized Algorithms for Synchronization

Initial Setup Plain Mode

Adversarial
Environment

Õ
(
T 2/3N1/3M

)
(Thm. 5.2)

Õ
(
T 1/2M(logN)1/2

)
(Thm. 5.3)

Õ
(
T 1/2N3/2M

)
(Prop. 5.4)

Stochastic
Environment

Õ
(
T 1/2N1/2M

)
(Cor. 5.6)

Õ
(
T 1/2M(logN)1/2

)
(Cor. 5.6)

Õ
(
(T 1/2 +N3)M

)
(Cor. 5.6)

Table 1: An overview of our results on the communication regret of various protocols for when the state is
generated adversarially or stochastically in the reconstruction game under various constraints on the ability of
the agents to coordinate. N denotes the size of the state space, M denotes the size of the message space, and
T denotes the time horizon. In the first column, we use generic algorithms that have no switching or tracking
regret, without tailoring them for communication. In the second and third columns, we design algorithms
that incorporate explicit synchronization mechanisms intended for improving communication. The “initial
setup” refers to a protocol where the sender and receiver first establish a shared meaning for messages, while
“plain mode” refers to a setting where meaning must emerge through online interactions alone.

Adaptive Adversarial
Environment

Oblivious Adversarial
Environment

Stochastic
Environment

Reconstruction Game Ω(T )
(Thm. A.2)

Õ
(
T 1/2M(logN)1/2

)
(Thm. 5.3)

Õ
(
T 1/2M(logN)1/2

)
(Thm. 5.3)

General Utilities Ω(T )
(Thm. A.2)

Õ
(
M
√
MT logN

)
(Thm. 6.4)

Õ
(
MT
√
logN

)
(Thm. 6.3)

Table 2: An overview of our results on the communication regret of the optimal protocol in each setting. N
denotes the size of the state space, M denotes the size of the message space, and T denotes the time horizon.
In the first column, we look at what happens when nature can pick states adaptively. The second when
nature can pick states that don’t depend on the actions of the sender and receiver. The final column looks at
what happens if nature must commit to a distribution of states beforehand. The Reconstruction Game is the
setting in which the receiver is attempting to recover the state the sender has observed. In a general utility
game, the sender and receiver have an arbitrary goal.

— one for the sender and one for the receiver — such that when any algorithms from these classes are used by
the sender and receiver, their communication regret grows sub-linearly with the number of communication
rounds.

Our first set of results identify sufficient conditions on sender’s and receiver’s algorithm for effective
communication to emerge. The two key properties we identify are sender’s stability — i.e., the sender should
not change its encoding strategy too frequently while still having no external regret — and receiver’s adaptivity
— i.e., the receiver’s actions must have no external regret not just with respect to a single decoding policy, but
also compared to sequences of decoding policies that are allowed to change minimally overtime. The former
is formalized by the framework of regret-minimization with switching costs Cesa-Bianchi et al. [2013] and the
latter is formally known as the regret-minimization with tracking regret Herbster and Warmuth [1998]. These
two properties are sufficient to ensure a sub-linear regret to the best synchronized encoder-decoder pair of
policies in hindsight. By designing pairs of computationally efficient no-regret algorithms that achieve optimal
switching regret and optimal tracking regret, we show that a language emerges at a rate of O

(
T 2/3

)
when

states are generated adversarially and Õ
(
T 1/2

)
when states are generated from an unknown distribution.

Our second set of results looks beyond stability and adaptivity as sufficient conditions. We show that
tailoring these algorithms toward synchronized multi-agent learning can significantly accelerate the emergence
of communication. We provide a pair of computationally efficient algorithms that achieve a communication
regret of O

(
T 1/2

)
when states are generated adversarially.
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Beyond reconstruction as a goal of communication, we extend our model to a broader class of cooperative
games with arbitrary utility. This broader class of utilities capture settings where the goal of communication
is to achieve high rewards on downstream tasks rather than reconstruction of the original state. We prove
that achieving sub-linear regret in these general settings is computationally intractable by reducing it to
a maximum coverage problem. Nevertheless, we show that there exist pairs of computationally efficient
algorithms that achieve sub-linear regret relative to a (1 − 1/e)-fraction of the utility that the optimal
encoder-decoder policy pair can achieve at a rate of O

(
T 1/2

)
.

2 Model and Preliminaries
The online communication game is defined by a state space Ω of size N and a message spaceM of size M. It
is a sequential game with incomplete information between a sender and a receiver, played repeatedly over T
rounds. Nature initially fixes a sequence of state-generating distributions (Dt)

∞
t=1. We call the special case

when all distributions Dt are the same as the stochastic setting. Every round t of the communication game
involves the following steps:
1. Nature draws a state ω∗

t ∈ Ω from the state-generating distribution Dt.
2. The sender sees ω∗

t and sends a message mt ∈M.
3. The receiver sees mt from the sender but not ω∗

t . The receiver then decodes mt to a state ωt.
4. Both sender and receiver receive the reward r(ω∗

t , ωt) = 1{ωt = ω∗
t }.

In the normal form representation of the communication game, the sender’s action space is Σ, which is
the set of all encoding schemes σ : Ω→M that are (possibly randomized) mappings from states to messages.
The receiver’s action space is P which is the set of all decoding schemes ρ :M→ Ω mapping messages to
states.

The joint success of the sender and receiver in the online communication game is measured by the following
notion of regret that we call the communication regret. We simply refer to this as regret in the remainder of
the paper.

Definition 2.1 (Communication regret). The communication regret of a sequence χ = (ω∗
t , σt, ρt)

T
t=1, written

RT (χ), is:

max
σ∈Σ,ρ∈P

T∑
t=1

1{ρ(σ(ω∗
t )) = ω∗

t } −
T∑

t=1

1{ρt(σt(ω
∗
t )) = ω∗

t }.

We suppress ω∗
t in the regret notion when it’s clear from the context. Moreover, we use rt(σ, ρ) = 1{ρ(σ(ω∗

t )) =
ω∗
t } as a shorthand for the rewards of an encoder-decoder pair.

Remark 2.2 (Adaptive state-generating distribution are too hard). In our setup, we described an oblivious
nature whose choice of state-generating distribution does not depend on the actions of the sender and receiver.
It turns out that if nature can adaptively choose strategies depending on the agents’ actions, then there are
games where it is impossible to achieve sub-linear communication regret as shown in Appendix A.

2.1 Background on Online Learning
As the notion of communication regret suggest, notions and algorithms originating from the online learning
literature will play a central in our paper.

In a setting with action set [K] and T rounds, for sequences of actions and reward functions (at, rt) where
at ∈ [K] and rt : [K]→ [0, 1], we can define the following notions of regret.

Definition 2.3 (External regret). The external regret of a sequence (at, rt)
T
t=1 is

RT = max
a∈[K]

T∑
t=1

rt(a)−
T∑

t=1

rt(at).
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Definition 2.4 (Regret with switching cost). The regret with switching costs Cesa-Bianchi et al. [2013] is
the external regret plus a cost for every round the selected action is switched:

Rswitch
T = RT +

T∑
t=2

1{at ̸= at−1}.

Definition 2.5 (Tracking regret with p segments). Tracking regret Herbster and Warmuth [1998] measures
a learner’s ability to compete with a sequence of changing benchmark actions rather than a single best fixed
action. It is defined as:

Rtrack,p
T = max

s1<···<sp+1∈[T ]
s1=1,sp+1=T
b1,...,bp∈[K]

p∑
i=1

si+1∑
t=si

rt(bi)−
T∑

t=1

rt(at).

This regret formulation is useful when the optimal action varies over time, such as in changing environments.
Feedback models. Online learning algorithms select action at in a round t based on the available history

consisting of actions and feedback of previous rounds. In a full-information setting the entire reward function
rt is revealed as feedback at the end of round t. In a bandit setting, only the reward of the selected action
rt(at) is revealed as feedback.

3 Related Work
The Emergent Communication (EC) literature Foerster et al. [2016], Lazaridou et al. [2016], Lazaridou and
Baroni [2020] studies how agents learn to communicate in Lewis signaling games when trained using standard
training dynamics. This study is particularly important to building cooperative AI systems that understand
and are aligned with human preferences and values Dafoe et al. [2020], Hadfield-Menell et al. [2016], Shah
et al. [2020].

One line of work studies the properties of the emergent language, particularly in terms of its efficiency
and natural-ness Lowe et al. [2019]. Theoretical frameworks Rita et al. [2022], Zion et al. [2024] have been
built for this purpose.

Another line of research, more closely related to our work, investigates how the choice of training algorithms
impacts performance. Empirical work compare different choices of standard training algorithms and model
architectures Havrylov and Titov [2017], Kim and Oh [2021], Ren et al. [2019], Chaabouni et al. [2022], Rita
et al. [2020] and impact of having population of agents Guo et al. [2019], Graesser et al. [2019], Raviv et al.
[2019a,b], Li and Bowling [2019], Chaabouni et al. [2022].

Some of the empirical findings are adjacent to the insights about the advantages of having a stable sender
and adaptive receiver from our work. Chaabouni et al. [2022] and Rita et al. [2020] show benefit stabilization
for the sender through KL regularization and increasing cost of communicating for the sender respectively. Li
and Bowling [2019] show benefit of resetting of receivers, a form of adaptivity, that occurs during population
interactions with new agents entering.

Training dynamics have received a more theoretical treatment in works in game theory and evolutionary
biology Franke [2009b,a], Jäger [2007, 2012], Trapa and Nowak [2000], Kirby [2002], Kirby et al. [2014], Jacob
et al. [2023]. However, these works mostly view language formation as equilibrium computation. There are
many possible equilibria and there is no guarantee of convergence to the optimal equilibrium, which is the
goal of our work.

4 Warmup: compression with automatic synchronization
For a sender and receiver to communicate successfully in online communication games they have to overcome
two challenges. The first is the problem of learning to optimally compress the state space into the size of
the message space. The optimal compression depends on the sequence of states generated. We call this the
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compression problem. The second is to enable the sender and receiver to be synchronized with one another.
That is, the sender’s encoder is optimal given the receiver’s decoder and the receiver’s decoder is optimal
given the sender’s encoder and nature’s strategy of the distribution over states.

As a warmup, let us first study the compression problem in isolation by studying an idealized setting in
which the sender and receiver are always synchronized, i.e. their actions are chosen in a centralized manner
by one meta-player. Removing the key challenge of synchronization, this allow us to isolate and identify other
factors which will play a role in the emergence of communication.

Definition 4.1 (Centralized communication game). The centralized communication game is a repeated game
between nature and a meta-player, where at every round players take actions simultaneously. 1 That is, nature
chooses a state ω∗

t ∈ Ω and the meta-player chooses an encoder-decoder pair (σt, ρt). Then the realized state
ω∗
t is revealed to the meta-player and the meta-player receives a reward r(ω∗

t , σt, ρt) = 1{σt(ρt(ω
∗
t )) = ω∗

t }.

The following proposition provides a computationally efficient algorithm for the meta-player to pick
encoder-decoder pairs that have low regret.

Proposition 4.2. There is a poly(M,N, T ) time algorithm for the meta-player in the centralized communi-
cation game (Definition 4.1), such that the meta-player’s expected regret satisfies E[RT ] ≤ 2

√
MT logN .

Proof sketch. We will first show that the meta-player’s problem can be reduced to regret minimization over
an action set of size

(
N
M

)
. We prove this formally in Lemma B.1 and sketch its proof below using two

observations:
First, while the meta-player’s action space is the space of all encoder-decoder pairs, it is sufficient for us to

consider just the space of decoders. We can think of the meta-player as choosing a sequence of decoders (ρt)Tt=1

and playing the sequence (BR(ρt), ρt)
T
t=1, where BR(ρ) is the optimal or best-response encoder corresponding

to the decoder ρ.
This restriction to the meta-player’s action set clearly comes at no cost to the utility. The meta-player

can indeed play such sequences of encoder-decoder pairs where the encoder is optimal relative to the decoder
since the optimal encoder BR(ρ) for decoder ρ can be computed without any knowledge of nature’s strategy.
BR(ρ) maps any state ω to a message that has maximum likelihood (under ρ) of being decoded to ω. Note
that the optimal encoder relative to a decoder on the other hand requires knowledge of nature’s strategy.

Second, we can show that the meta-player’s choice of ρt, without loss of generality, can be restricted to
the space of deterministic and injective decoders, i.e., those mapping each message in M deterministically to
distinct state in Ω. We note that there are

(
N
M

)
such mappings from the message space to the state space.

Next, we note that the feedback model for the meta-player is full-feedback, since when the realized state
is revealed, the reward of every pair (BR(ρ), ρ) can be computed. This reward is 1 if the realized state is in
the image set of ρ and 0 otherwise.

Algorithms such as hedge achieve regret at most 2
√
T · log(number of actions). Since there are

(
N
M

)
actions, hedge achieves regret at most 2

√
TM logN .

The final part of the proof is showing that hedge can be implemented in time polynomial in M,N , despite
the number of actions

(
N
M

)
being exponential in M . For efficient implementation of Hedge, we leverage the

aforementioned combinatorial structure (deterministic and injective mapping) together with the Component
Hedge algorithm of Koolen et al. [2010]. We state this algorithm and its guarantees in Appendix D.1 and use
it to complete the proof of this theorem in Appendix B.1.

5 Main Results
In our warmup study of centralized communication game, the strategies of the sender and receiver were
always synchronized—i.e. the pair of encoder-decoders used in every round were optimal with respect to each

1This means the meta-player chooses an action without having access to the realized state. This it to make the idealized
setting serve as a building block for the decentralized setting where the receiver must choose a decoder without having access to
the realized state.
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others. However, in the original formulation of our game, the players have to choose encoding and decoding
policies in a decentralized manner without knowing each other’s chosen policy. In this case, the receiver’s
actions are no longer automatically synchronized with the sender’s choice of an encoding policy. Instead, the
receiver needs to learn to adapt its decoder policy to be synchronized with the sender’s encoding scheme.

5.1 Switching and Tracking Regrets are Sufficient For Emergent Communication
In this section, we see how natural notions of switching regret (Definition 2.4) of the sender and the tracking
regret (Definition 2.5) of the receiver are sufficient for the receiver to quickly catch up and adapt her decoding
policy to the sender’s encoding scheme, without any additional explicit effort towards synchronizing the two
agents.

At a high level, every time the sender updates their encoding scheme, the receiver must spend some
interaction rounds learning and adapting to the new scheme, during which both agents can incur an error.
Intuitively, the fewer times the sender updates their policy (i.e., lower switching regret), the easier it is for the
receiver to catch up. However, the standard notion of external regret for the receiver is too loose to ensure
effective adaptation. For synchronization to emerge naturally, it is sufficient for the receiver’s algorithm
to compete with the moving benchmark defined by the sender’s evolving policies. This is where tracking
regret comes in handy: by ensuring that the receiver’s actions are competitive with respect to any moving
benchmark (with only a few segments), it ensures that the receiver’s algorithm also effectively catches up to
the sender’s moving encoding scheme.

Below, we describe how the sender and receiver can use any generic algorithms Astable and Aadaptive, where
Astable is an online algorithm with full-information feedback for the actions space Σ× P of encoder-decoder
pairs and Aadaptive is an online learning with bandit-feedback over the action space of decoders P.

We then bound the communication regret in terms of switching regret of Astable and tracking regret of
Aadaptive. Finally, using algorithms developed by works studying switching and tracking regret as black boxes,
we get a communication regret of O

(
T 2/3MN1/3

)
.

Definition 5.1 ((Astable,Aadaptive)-Stable sender, adaptive receiver protocol). This protocol uses a stable
regret minimizing algorithm Astable and an adaptive regret minimizing algorithm Aadaptive in the following
way:

Sender. The sender uses the algorithm Astable to select encoder-decoder pairs (σt, ρt) and employs the
encoding strategy σt at round t. Astable will typically output σt = BR(ρt). Hence the sender choosing σt in
this way enables the sender to optimize over the space of decoders instead of encoders, which is a smaller
space.

Receiver. The receiver uses the algorithm Aadaptive to select the decoding strategy ρt for round t.

Theorem 5.2. Suppose the sender and receiver follow the stable sender, adaptive receiver protocol (Defini-
tion 5.1) with the algorithms Astable,Aadaptive, then the communication regret is at most

RT ≤ Rext
T (Astable) +Rtrack

T (Aadaptive;ST (Astable)),

where ST (Astable) is the number of switches made by Astable and Rext
T and Rtrack

T denote external and tracking
regrets.

There exist efficient algorithms Astable,Aadaptive that result in expected communication regret

E[RT ] ∈ O
(
MT 2/3(N logN)1/3(log T )1/6 +M log(N)

)
.

5.2 Better bounds through algorithms tailored for communication
In the previous part, we saw communication protocols for the sender and receiver that used natural online
learning algorithms as building blocks, without modifying them to specialize toward the communication
problem. In this subsection, we will construct protocols that are more specialized and achieve better regret
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rates of O
(
T 1/2

)
in comparison to the rate of O

(
T 2/3

)
previously achieved. The protocols in this subsection

improve the regret bound by reducing the cost to achieve synchronization after each switch by the sender.
A better regret bound can be achieved through a protocol that has a cost of O (M logN) per switch.

This is done by sending a sequence of messages to the receiver not about the current state, rather about the
new policy the sender is committing to. In doing so, the receiver will not need to explore to best respond,
improving significantly the regret attained at the cost of requiring a more intricate coordination scheme.

Theorem 5.3. (Synchronization with Initial Setup) Given any online algorithm A for the centralized
communication game that generates a sequence of encoder-decoder pairs, there are sender and receiver
algorithms that achieve communication regret at most

RT ≤ Rext
T (A) +M logN · ST (A),

where ST (A) is the number of switches made by A.
There are efficient sender and receiver algorithms that result in expected regret

E[RT ] ∈ O
(
T 1/2M logN

)
.

Proof. The proof of the first part of the theorem proceeds similarly to the proof of Theorem 5.2 with the
sender using A in the same way by following the encoder strategy output by A.

Compared to the proof of that theorem, We show an improved cost per switch due to modifications to the
sender and receiver strategies we describe next.

The receiver’s strategy is a mapping from states to messages, and there exists NM such mappings. Because
the sender chooses the encoder, the sender in fact knows what decoder the receiver should use. The key idea
is to get the sender to explicitly communicate this. The sender has M messages, and so can communicate an
element of an arbitrary set of size NM in logM (NM ) = M logM (N) steps by assigning a unique sequence of
messages to each element.

If the sender switches their strategy at preset points known to both the sender and receiver, the sender
and receiver may agree beforehand to reserve the next M logM (N) iterations for communicating the new
decoder to the receiver, paying a cost of at most M logM (N).

The cost per switch can be reduced through a more refined notion of stability. Previously, we said that
the sender was stable if it did not change the encoding strategy too frequently. The sender is additionally
stable if each switch does not change the mapping of too many states. In this way, the new encoding scheme
can be communicated more easily with fewer than M logM N rounds since only the changed mappings need
to be communicated. This is explored further in Appendix C.1.

By using the algorithm in Corollary B.2, and setting α =
√
M logN , we get the claimed bound of

E[RT ] ∈ O
(
T 1/2M(logN)1/2

)
.

The protocol in the above proof relies on both the sender and the receiver having a shared meaning for
messages before the start of the online interaction. That is, when the sender communicates a sequence of
M logN messages after every shift, the sender expects the receiver to be able to deduce the decoder to shift
to based on this. We refer to this setting as synchronization through “initial setup”, analogous to the usage of
“trusted initial setup” in distributed computing.

In typical emergent communication settings, the sender and receiver are assumed to not have any shared
meaning of messages but instead synchronize on their meanings during their joint interaction. In the following
proposition we provide protocols that do not assume any such shared meaning of messages but still achieve
O
(
T 1/2

)
albeit with a worse dependence on M,N . We refer to this setting as “plain mode” to contrast with

“initial setup”.

Proposition 5.4. (Synchronization in plain mode) Given any online algorithm A for the centralized
communication game, there are sender and receiver algorithms that don’t rely on initial shared meaning of
messages that achieve communication regret at most

RT ≤ Rext
T (A) +O

(
MN3 log(1/δ)

)
· ST (A),
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with probability at least 1− δ for δ > 0, where ST (A) is the number of switches made by A.
There are efficient sender and receiver algorithms that don’t rely on initial shared meanings of messages

that result in expected communication regret

E[RT ] ∈ O
(
T 1/2MN3/2(logN)1/2

)
.

The sender and receiver algorithms used to prove the regret rate in Proposition 5.4 have aspects designed
specifically for communication. For instance, the sender needs to intentionally cause a mistake to reset the
receiver if the receiver accidentally learned the wrong decoding for a message.

However, the algorithms don’t rely on an initial shared meaning of messages. If an adversary changed the
ordering of messages via a random permutation, the algorithms still converge to efficient communication.
This is not true of the algorithms designed in Theorem 5.3.

5.3 Better Bounds for Stochastic Environments
In the stochastic setting where the distribution over states is the same in all rounds, nature picks a distribution
over states and sticks to it throughout the game, we can prove that a regret of Õ

(
T 1/2

)
is achievable.

The improved regret bounds are made possible through improved switching regret in the stochastic setting
compared to the adversarial setting.

This translates to an improved communication regret across all settings—adaptive receiver, synchronization
with an initial setup, and synchronization in plain mode by plugging in the improved switching regret bounds
into Theorems 5.2, 5.4, 5.3.

Proposition 5.5. There is an efficient algorithm that allows the sender and receiver to learn a language with
regret E[RT ] ∈ Õ

(
MT 1/2

)
in the centralized communication game that switches at most 1 + log log T times.

Proof sketch. We present a method that achieves a regret of T 1/2 that only requires the sender to switch
their strategy O (log log T ) times. This is inspired by Cesa-Bianchi et al. [2013, 2014].

The key idea is to have a sequence of stages where stage s lasts for Ts steps, starting with s = 0:
1. Use the empirical estimate of the probability of each state so far to estimate the optimal communication

strategy.

2. Commit to this for Ts steps, all the while gathering more data on the number of times each state appears.

3. After Ts steps have run, increment s and go back to step 1 if we haven’t run for at least T steps yet.
Set the length of each stage to be Ts = T 1−2−s

. In Appendix B.5, we show that this is just the right amount
of stability to get Õ

(
T 1/2

)
regret.

Using Proposition 5.5 as a backbone, we can derive regret bounds for each of the various settings we
consider.

Corollary 5.6. With a stochastic environment, a stable sender and adaptive receiver (Definition 5.1) can
achieve regret of Õ

(
T 1/2N1/2M

)
. There exists an efficient algorithm for the sender and receiver that achieves

a regret of Õ
(
T 1/2M

)
. Finally, the sender and receiver can coordinate without initial shared meanings of

messages efficiently and achieve a regret of Õ
(
(T 1/2 +N3)M

)
.

The three parts of the Corollary directly follow by applying Proposition 5.5 to Theorem 5.2, Theorem 5.3,
and Proposition 5.4 respectively.

Switching induces a cost, so a natural question that arises is whether we can get away with less than
O (log log T ) switches and still achieve sub-linear regret. We answer this in the affirmative in Appendix C.2,
introducing a protocol that achieves Õ

(
MT 2/3

)
regret with only a single switch.
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6 General Utilities
In this section, we study the more general setting where the agents are collaborating not to recover the state
but to achieve arbitrary tasks. At every iteration after receiving a message, the receiver now plays actions
from a set A, and the reward function r : Ω×A → [0, 1] is arbitrary.

The insights we gained solving the problem in the case where the reward was simply the reconstruction
accuracy (i.e., the equality indicator) can be used to create an algorithm that works for general reward
functions. The solutions it arrives at can be suboptimal, however. We then show that this is in fact the
best you can hope for, proving that any no-regret learning algorithm that achieves better utility must be
computationally intractable.

The two important parameters that will control the difficulty of this problem are the number of actions
A := |A| and the max sum of utilities in each state S := maxω∈Ω

∑
a∈A r(ω, a).

6.1 A Reduction to the Equality Game
We can use the insights gained in the sections above to design no-regret algorithms that efficiently achieve a
(1− 1/e)-approximation of optimal play.

Definition 6.1 (Approximate Communication regret). For α ∈ [0, 1], the α-approximate communication
regret of a sequence χ = (ω∗

t , σt, ρt)
T
t=1, written Rα

T (χ), is:

α · max
σ∈Σ,ρ∈P

T∑
t=1

1{ρ(σ(ω∗
t )) = ω∗

t } −
T∑

t=1

1{ρt(σt(ω
∗
t )) = ω∗

t }.

This notion of a no-approximate regret algorithm has been studied before in various settings where finding
the optimal solution is statistically tractable but computationally intractable, such as Kakade et al. [2007],
Roughgarden and Wang [2018], Emamjomeh-Zadeh et al. [2021].

The key idea of the general reduction is to associate each message with an action, and have the sender
puppeteer the receiver. To find the right actions to assign to each message, we write the problem as one of
maximizing a monotone, submodular set function. We then use the insights of the previous sections to find
the correct times for the sender to update the encoder with its best guess of what maximizes this submodular
function.

Proposition 6.2. There is an efficient algorithm for computing a deterministic encoder-decoder pair (σ, ρ)
that achieves a (1− 1/e)-approximation of the optimal encoding scheme for arbitrary utilities when given the
distribution of states D.

Proof. This is an optimization problem of a monotone submodular set function under a cardinality constraint,
a problem that is known to have efficient (1− 1/e)-approximations [Buchbinder et al., 2014].

Recall that there exists an optimal deterministic policy. A deterministic decoder will always map the M
messages to M fixed actions. So, the task of finding the optimal communication scheme boils down to finding
these M actions we would like the receiver to play. Once we have these, we can have the sender at every turn
tell the receiver which of these M actions maximizes utility on their current observed state.

To solve for this, define a function V : 2A → R, that when given a collection of actions finds the expected
value of assigning them a unique message:

V ({a1, . . . , ak}) = E
ω∼D

[
max

i
r(ai, ω)

]
.

This is a monotone function as increasing the number of messages we send can only improve reward. Moreover,
for any sets of actions A,B ⊆ A, we can write

V (A) + V (B) = E
ω∼D

[
max
a∈A

r(a, ω)

]
+ E

ω∼D

[
max
a′∈B

r(a′, ω)

]
.
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For any state ω ∈ Ω, notice that maxa∈A∪B r(a, ω) must equal at least one of maxa∈A r(a, ω) and maxa∈B r(a, ω).
Moreover, Since A∩B is a subset of both A and B, it must be that maxa∈A∩B r(a, ω) is at most maxa∈A r(a, ω)
and at most maxa∈B r(a, ω). Therefore,

V (A) + V (B) = E
ω∼D

[
max
a∈A

r(a, ω) + max
a′∈B

r(a′, ω)

]
≥ E

ω∼D

[
max

a∈A∩B
r(a, ω) + max

a′∈A∪B
r(a′, ω)

]
= V (A ∩B) + V (A ∪B),

proving submodularity.
We would like to maximize V under the constraint that the input is of size at most M . By Buchbinder

et al. [2014, Theorem 3.1], there exists an algorithm that can compute a (1 − 1/e)-approximation of the
optimal set efficiently.

Using Proposition 6.2 as the backbone, we can describe no-regret algorithms for converging to (1− 1/e)-
approximations of optimal utility in stochastic environments.

Theorem 6.3. There is an efficient no-regret algorithm that can achieve a (1− 1/e)-approximation of optimal
communication for arbitrary utilities in stochastic environments with regret Õ

(
MT 1/2

)
.

Note that for unbounded reward functions r : Ω × A → R, when U = maxω∈Ω,a∈A |r(ω, a)|, the same
argument proves a regret bound of Õ

(
UMT 1/2

)
.

When the states come not from a fixed, hidden distribution, but from an adversary that is oblivious to
the actions of the sender and receiver, we can design similar algorithms by combining the insights above with
those of Streeter and Golovin [2008] and Kalai and Vempala [2005].

Theorem 6.4. There is an efficient no-regret algorithm that can achieve a (1− 1/e)-approximation of optimal
communication for arbitrary utilities in adversarial environments with regret

3M2
√
T logN ∈ O

(
M2
√
T log(N)

)
.

Proof. By Proposition 6.2, to solve the communication problem, all we need is an algorithm for maximizing
submodular functions online with a small number of switches. Streeter and Golovin [2008] propose a general
algorithm that we utilize to design algorithms for online monotone submodular maximization with switching
costs and cardinality constraints.

To get an algorithm that works in the adversarial setting, we will care not about maximizing V ({a1, . . . , ak}) =
Eω∼D [maxi r(ai, ω)] as above, rather will design an algorithm to maximize

∑T
t=1 Vt({a1, . . . , ak}), where

each Vt({a1, . . . , ak}) = maxi r(ai, ωt). The adversary chooses the sequence of ωt before the game begins.
The algorithm will rely on the Follow the Perturbed Leader (FTPL) algorithm in Kalai and Vempala

[2005], mini-batched into groups of α as is done in Corollary B.2. Using this, we can develop Algorithm 1, a
no-approximate-regret online monotone submodular function maximization algorithm with switching costs,
cardinality constraints, and an oblivious adversary, with optimal regret rates in T .

Notice that the payoffs of the ith instance of FTPL depends on the choices made by nature and the first
i− 1 instances of FTPL, but not on their own history of choices. So, from the perspective of each FTPL
instance, they are playing against oblivious adversaries.

This simulates the greedy algorithm for maximizing monotone submodular functions under cardinality
constraints in an online manner. We choose copies FTPL to decide actions, for the purpose of being able
to bound the number of times the sender will change their encoding scheme. This isn’t strictly necessary
however, and any online learning algorithm that achieves low regret with oblivious adversaries can be used
here.

By Corollary B.2, each instance of FTPL achieves a regret of 2α
√
2MT with 1/M

√
2MT switches.
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Algorithm 1 A No-Approximate-Regret Algorithm for the General Utility Communication Game (parame-
terized by ϵ, α).
1: Initialize M different copies of the Follow the Perturbed Leader algorithm (FTPL) that each pick actions

in A, each mini-batched into groups of α. Each copy picks an initial perturbation pi ∼ Unif[0, 1/ϵ]M .
2: Nature commits to a sequence of T states ω1, . . . , ωT before the game starts, hidden to the sender and

receiver.
3: for t← 1 to T do
4: Each ith instance of FTPL suggests action a

(t)
i .

5: The sender will play an encoding scheme that assigns to action a
(t)
i a unique message.

6: The state ωt is revealed to the sender, and the sender sends a message associated with an action in{
a
(t)
1 , . . . , a

(t)
M

}
that maximizes utility at state ωt.

7: Let Vt(A) = maxa∈A r(a, ωt). The payoff for each action a ∈ A given to the ith copy of FTPL is

Vt

({
a
(t)
1 , . . . , a

(t)
i

})
− Vt

({
a
(t)
1 , . . . , a

(t)
i−1

})
.

8: end for

By Streeter and Golovin [2008, Lemma 3], we can bound the (1− 1/e)-expected-regret of the sender in the
centralized, general-utility game by the sum of the regrets of each instance, meaning Algorithm 1 achieves a
regret of 2Mα

√
2MT in expectation. We switch whenever any one of the M experts switch, so we switch at

most M/α
√
2MT times. The cost to each switch can be taken down to, by Theorem 5.3, M logM (N). Using

the coordination protocol in Theorem 5.3, this means that we incur at most

M2 log(N)

α

√
2TM

cost from switching. Set α =
√
M logN , and the expected regret that Algorithm 1 achieves is

3M2
√
T log(N).

6.2 The Hardness of Arbitrary Utilities
The algorithm given above does in fact meet the theoretically optimal approximation factor.

When there are multiple best actions in each state, it may not be clear what the most efficient way to
group states together is. This source of complexity on its own is enough to make the problem NP-hard. And
not only is this problem hard, but the simpler problem with rewards restricted to be 0 or 1 is computationally
intractable in the worst case.

Lemma 6.5. Computing an α-approximation of the optimal strategy (not necessarily deterministic), where
α > 1− 1/e, in a communication game with utilities restricted to be 0 or 1 is NP-hard.

With Lemma 6.5 as the backbone, we can prove that efficient learning algorithms must perform poorly.

Theorem 6.6. Suppose that a communication algorithm achieving an α > 1− 1/e approximation of optimal
play for arbitrary utilities satisfies RT ∈ poly(N,M), and each iteration requires poly(N,M) compute for the
sender and receiver. If P ̸= NP, it must be that RT ∈ ω(T 1−ϵ) for all ϵ > 0. This holds even when rewards
are restricted to be either 0 or 1.

Remark 6.7. Theorem 6.6 doesn’t rule out the existence of very slow no-regret algorithms, for example, those
with a rate of O

(
T

log T

)
for the sender and receiver.
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7 Discussion and Concluding Remarks
Our work initiates the study of algorithmic principles that drive the emergence of communication in multi-agent
learning environments. We believe that our online communication game model provides a natural framework
for exploring a range of algorithmic questions related to emergent communication, directly capturing the
dynamical nature of the evolution of communication through notions of regret. Several immediate and long-
term questions remain, which we hope this framework will help clarify. The most immediate is investigating
lower bounds to gain insights into the tightness of our communication regret bounds.

More generally, some of the algorithms we derive are clearly more natural than others. For example,
the generic protocol of Definition 5.1 between stable senders and adaptive receivers is quite natural, as it
lacks any explicit synchronization steps. In contrast, our tailored algorithms are less natural for emergent
communication due to the explicit steps they take to synchronize the agents. We hope that our framework
serves as a step toward formalizing the philosophical question of what makes a communication scheme natural.

One potential approach to studying natural communication is to consider a sender interacting with a
population of receivers rather than a single one, making less natural schemes—such as directly communicating
the new policy after every switch—infeasible. Another direction is to extend the framework to multi-round
games, where agents engage in conversation and information about the state is distributed among them
rather than being given solely to the sender.
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A Adaptive Adversaries Are Too Powerful
A key assumption in this work is that the environment cannot adaptively pick states based on the choices of
the sender and receiver. The reason for this is that the adversary becomes too powerful otherwise, removing
any hope the learners have of achieving sub-linear regret. This is analogous to results in the prediction from
experts with switching costs literature, where the learner must suffer linear regret with an adaptive adversary
[Altschuler and Talwar, 2018].

The adversary’s strategy will be to exploit the fact that the Sender and Receiver play moves that are
uncorrelated given the history of the game, which the adversary also has access to. Adaptive adversaries can
exploit uncoordinated agents by taking advantage of the fact that it is impossible to randomize over best
response pairs in a way that beats an adaptive adversary when actions are independently chosen.

First, we prove a lower bound when the sender is one message short from perfect communication.

Lemma A.1. In the communication game with an adaptive adversary, when N ≥ 3 and M = N − 1, any
learning algorithm must achieve a regret of at least N−2

2N · T .

Proof. First we will lower bound optimal utility. Notice that regardless of the states played by the adversary, in
hindsight, there must always exist an encoder-decoder pair that achieves N−1

N T regret. Indeed, let ω1, . . . , ωT

be the sequence of states played by the adversary. There must exist a state ω that appears at most T
N times.

The rest of the states must appear at least N−1
N · T times. Let σ be the encoder that assigns to each of these

states a unique one of the N − 1 messages, and ρ be the decoder that reverses this. This correctly recovers
the state when ω doesn’t appear, so achieves a utility of at least N−1

N · T .
Now we will lower bound the utility the agents can achieve during the learning process. On step t over

the T steps, let Ht = (ω1, σ1, ρ1, . . . , ωt−1, σt−1, ρt−1) be the history of states, encoders, and decoders played.
The key property that we will exploit is that the moves the sender and receiver play are independent, so that
σt ⊥ ρt | Ht.

Given a σt−1 and ρt−1, what state should the adversary play? The expected utility that the sender and
receiver achieve, when the adversary plays state ω ∈ Ω is the probability that the agents correctly recover ω:

Pσt,ρt
(ω = ρt(σt(ω)) | Ht) =

∑
m∈M

Pσt,ρt
(ω = ρt(m) and m = σt(ω) | Ht)

=
∑

m∈M
Pρt

(ω = ρt(m) | Ht) · Pσt
(m = σt(ω) | Ht)

= E
m∼σt(ω)|Ht

[
Pρt (ω = ρt(m) | Ht)

]
.

We will show that there must always exist a state ω ∈ Ω such that

E
m∼σt(ω)|Ht

[
Pρt

(ω = ρt(m) | Ht)

]
≤ 1

2
.

Order the states ω1, . . . , ωN . If this is true for any of the first N − 1, we are done. Otherwise, it is the case
that for all i from 1 to N − 1,

E
m∼σt(ωi)|Ht

[
Pρt

(ωi = ρt(m) | Ht)

]
>

1

2
.

Therefore, for each i from 1 to N − 1, there must exist some mi ∈M such that

Pρt (ωi = ρt(mi) | Ht) >
1

2
. (1)
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For any i from 1 to n, for any state ω ∈ Ω with ω ̸= ωi:

Pρt
(ω = ρt(mi) | Ht) = 1− Pρt

(ω ̸= ρt(mi))

≤ 1− Pρt
(ωi = ρt(mi))

< 1− 1

2
=

1

2
.

So, for any state that is not ωi,

Pρt (ω = ρt(mi) | Ht) <
1

2
. (2)

By Equations (1) and (2), no two mi can be equal. Since this is true for N − 1 = M states, and every state
is assigned a unique message by the above, every message appears in the set of m1, . . . ,mN−1. That is, there
is a perfect matching between the set of all messages and the first N − 1 states, where when a message mi is
played, it must correspond to some state ωi with high probability. Therefore, for the final state ωN , every
message is unlikely to correspond to it, i.e. for every message m ∈M ,

Pρt
(ωN = ρt(mi) | Ht) ≤

1

2
,

and so
E

m∼σt(ωN )|Ht

[
Pρt

(ωN = ρt(mi) | Ht)

]
≤ 1

2
.

So, the adversary can always play a state ω that forces the expected utility the agents achieve to be at
most 1

2 . Whereas in hindsight, the agents could have achieved an average of N−1
N per step, resulting in an

expected regret of at least:

E

[
max
σ,ρ

T∑
t=1

1(ωt = ρ(σ(ωt))−
T∑

t=1

1(ωt = ρt(σt(ωt))

]
≥ N − 1

N
· T − 1

2
· T =

N − 2

2N
· T.

To extend this result to the case where the number of messages is arbitrary, the adversary can beforehand
commit to only using a subset of the states. It is interesting that even if the learners know which subset of
the states the adversary has committed to using, they still cannot achieve sublinear regret.

Theorem A.2. In the communication game with an adaptive adversary, when N ≥ 3 and 1 < M < N , any
learning algorithm must suffer a regret of at least M−1

2M+2T .

Proof. When M may be arbitrary, the adversary may just commit upfront to only sending M +1 ≤ N states,
fixed at the start arbitrarily. Since M ≥ 2, this means that there are M + 1 ≥ 3 states, so the lower bound in
Lemma A.1 directly applies.

For the learning algorithms we derive to be non-trivial and be able to have strong guarantees, we then
must assume that the environment is oblivious to the actions of the sender and receiver.

B Full proofs of results

B.1 Old proof of Proposition 4.2
Proposition 4.2. There is a poly(M,N, T ) time algorithm for the meta-player in the centralized communi-
cation game (Definition 4.1), such that the meta-player’s expected regret satisfies E[RT ] ≤ 2

√
MT logN .

Proof. We will first show that the meta-player’s problem can be reduced to regret minimization over the
space of decoders. While the meta-player’s action space is the space of encoder-decoder pairs, it is sufficient
for the meta-player to optimize over the space of decoders.
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The optimal or best-response encoder corresponding to a decoder ρ, denoted by BR(ρ), maps any state ω to
a message that has maximum likelihood of being decoded to ω i.e., the message argmaxm∈M PrX∼ρ(m)[X = ω]
with ties broken arbitrarily. WLOG we can assume BR(ρ) is a deterministic mapping for every ρ.

Note that BR does not depend on nature’s strategy. Hence it suffices for the meta-player to find a sequence
of decoders (ρt)

T
t=1 and can then play the sequence (BR(ρt), ρt)

T
t=1. Such a sequence has the highest utility

of any sequence (σ′
t, ρt)

T
t=1.

We can further reduce the meta-player’s sufficient action space from the space of decoders to the space of
deterministic, injective decoders that map each message deterministically to distinct state.

Lemma B.1. For any distribution z over Ω, the probability Prω∼z[ρ(σ(ω)) = ω] is maximized by a determin-
istic σ, ρ where ρ is injective.

Proof. For any distribution p over a space X, we will denote by p(x) for x ∈ X, the probability weight p
places on x.

Pr
ω∼z

[ρ(σ(ω)) = ω] =

N∑
i=1

M∑
j=1

z(ωi) · σ(ωi)(mj) · ρ(mj)(wi)

Consider the quantities σ(ωi)(mj) · ρ(mj)(wi) ∈ [0, 1] for i ∈ [M ], j ∈ [N ] and consider their sum,∑
i∈[N ]

∑
j∈[M ]

σ(ωi)(mj) · ρ(mj)(wi) ≤
∑
i∈[N ]

∑
j∈[M ]

ρ(mj)(wi)

=
∑

j∈[M ]

∑
i∈[N ]

ρ(mj)(wi) (Swapping order of summation)

= M.

Above we expressed the reconstruction success probability Prω∼z[ρ(σ(ω)) = ω] as
∑

i∈[N ] µiz(ωi) where
µi ∈ [0, 1] and

∑
i∈[N ] µi ≤M .

Therefore reconstruction probability is at most the sum of the M largest of the N quantities (z(ωi))i∈N .
Let us call the M states with the highest weights according to z by F .

This upper bound of the reconstruction probability is achieved by a deterministic ρ that is a bijection
between the M messages and F , and a σ that maps each ω ∈ F to the message m such that ρ(m) = ω.

The feedback model for the meta-player is full-feedback, since when the realized state is revealed, the
reward of every decoder and its associated encoder can be computed. The reward of a decoder is 1 if the
realized state is in its image set and 0 otherwise.

Algorithms such as hedge achieve regret at most 2
√
T · log(number of actions). Since there are

(
N
M

)
actions, hedge achieves regret at most 2

√
TM logN .

The final part of the proof is showing that hedge can be implemented in time polynomial in M,N , despite
the number of actions

(
N
M

)
being exponential in M .

We use the algorithm Component Hedge developed in work on combinatorial bandits Koolen et al. [2010]
for the efficient implementation of Hedge. The algorithm and its guarantees are stated in Appendix D.1.

We now show its applicability to our setting.

Applicability of Component Hedge. The set up of combinatorial bandits deal with action spaces that
are subsets of {0, 1}d. And the loss of action ct in a round t is defined by a reward vector rt ∈ [0, 1]d as
⟨ct, rt⟩.

Appendix D.1 provides regret and computational efficiency guarantees when the action space is {c ∈
{0, 1}d : ⟨1, c⟨= k}.

We now show how the meta-player’s action space can be re-parameterized to be C = {c ∈ {0, 1}N : ⟨1, c⟨=
M} and how the reward at every round is described by a reward vector rt ∈ [0, 1]N .
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We previously reduced the meta-player’s action space to all M sized subsets of Ω. We can represent each
such action in this space by a vector c ∈ C, where ci indicates whether ωi ∈ Ω is included in the subset (of
states in the image set of the decoder).

The reward at each round t when the realized state is ω∗
t can be parameterized by a one-hot encoding

vector in [0, 1]N with one at the component corresponding to the realized state. The reward for action c ∈ C
is ⟨c, rt⟩.

B.2 Proof of Proposition 4.2
Proposition 4.2. There is a poly(M,N, T ) time algorithm for the meta-player in the centralized communi-
cation game (Definition 4.1), such that the meta-player’s expected regret satisfies E[RT ] ≤ 2

√
MT logN .

Proof. Communication in this game is an online linear optimization problem in disguise. Any fixed choice of
an encoder-decoder pair (σ, ρ) will correctly recover at most M states, since ρ maps to only M states. Let
S(σ, ρ) = {ω ∈ Ω | ρ(σ(ω)) = ω} be the set of states correctly recovered by the pair. Then |S(σ, ρ)| ≤M for
all encoder-decoder pairs σ, ρ.

Nature picks ω ∈ Ω and the meta-player gets a reward of 1 when ω ∈ S(σ, ρ). For X ⊆ Ω, let 1X ∈ RN

be the indicator vector with 1s on indices corresponding to states in X and 0s elsewhere. The meta-player
gets a reward of 1T

{ω}1S(σ,ρ).
More generally, we can think of the problem of picking encoder-decoder pairs as solving a combinatorial

optimization problem, where we think of nature as picking a basis element in e ∈ RN and the meta-player as
picking a vector v ∈ {0, 1}N that is M -sparse, so ∥v∥0 = M . The meta-player gets a reward of eT v.

Of the many algorithms proposed to solve this problem, the Follow the Perturbed Leader algorithm will be
most useful to us, achieving a regret of 2

√
2MT in expectation, with only

√
2MT switches in expectation.

Corollary B.2. There is a poly(M,N, T ) time algorithm for the meta-player in the centralized communication
game, such that the expected regret satisfies, for any α ≥ 1 that could depend on M,N, T :

E[RT ] ≤ 2α
√
2MT

and expected number of switches is at most,
1

α

√
2MT.

Proof. We can use a standard mini-batching technique, e.g. like those used in Arora et al. [2012], Altschuler
and Talwar [2018], to obtain a more fine-grained control over the tradeoff between our algorithm’s regret and
its number of switches.

Specifically, batch the T iterations into T
α2 groups of α2, where we commit to each action for α2 steps.

Now, run the algorithm above with number of iterations T/α2, and repeat every action α2 times. Because
the adversary is oblivious, this cannot increase regret by more than a factor of α2, resulting in regret

2α2
√
2M(T/α2) = 2α

√
2MT,

but with an expected number of switches of at most√
2M(T/α2) =

1

α

√
2MT.

B.3 Proof of Theorem 5.2
Lemma B.3. There is a poly(M,N, T ) time algorithm for the meta-player in the centralized communication
game, such that the expected regret satisfies, for any α ≥ 1 that could depend on M,N, T :

E[RT ] ≤ 4α
√
TM(1 + log(N)) + 4M(1 + log(N)) ∈ O

(
α
√
TM log(N) +M log(N)

)
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where for any δ ∈ (0, 1], the number of switches is at most, with probability at least 1− δ:

1

α

√
TM(1 + log(N)) log(1/δ) ∈ O

(
1

α

√
TM log(N) log(1/δ)

)
.

Proof. The Multiplicative Follow the Lazy Leader (FTLL∗) algorithm will allow us to prove high probability
bounds on the number of switches.

For the sake of completeness, we present the algorithm from Kalai and Vempala [2005] below:

Algorithm 2 The Multiplicative Follow the Lazy Leader Algorithm (FTLL∗) [Kalai and Vempala, 2005]

1: Choose an initial perturbation p(1) sampled from the Laplace distribution q(x) ∝ e−ϵ|x|1 .
2: Let S

(t)
i be the ongoing sum of utility for each action i on step t.

3: for t← 1 to T do
4: Pick the encoding scheme that maximizes S

(t)
i + p

(t)
i , and receive the vector of rewards r(t). For the

communication game, this is an indicator vector for the state the adversary picks.
5: Switch with probability max

(
0, 1− q(p(t)−r(t))

q(p(t))

)
, setting pt+1 = pt.

6: Otherwise, don’t switch your expert, so set p(t+1) = p(t) − r(t).
7: end for

By Kalai and Vempala [2005, Theorem 1.1, Lemma 1.2], this achieves a regret of

2ϵT +
2M(1 + log(N))

ϵ
+ 4M(1 + log(N)).

Setting

ϵ =

√
M(1 + logN)

T
,

this achieves a regret of at most, in expectation,

4
√

TM(1 + logN) + 4M(1 + log(N)).

To prove a high probability bound on switching, let Xt be the number of switches FTLL∗ performs up to
iteration t, and let Yt = Xt − ϵt. Then, for any t, we can see that this sequence increases by at most one at
each iteration: |Yt+1 − Yt| ≤ 1.

Notice that the probability of switching at each step does depend on whether we have switched on previous
steps. Regardless, as shown in the proof of Kalai and Vempala [2005, Lemma 1.2], the probability of switching
is always at most ϵ. Indeed, we always use fresh randomness at each step to decide to switch, and exactly as
Kalai and Vempala [2005] argue, they do so with probability at most on step t:

1− q(p(t) − r(t))

q(p(t))
= 1− exp

(
−ϵ(
∣∣∣p(t) + r(t)

∣∣∣
1
−
∣∣∣p(t)∣∣∣

1

)
≤ 1− exp

(
−ϵ
∣∣∣r(t)1

∣∣∣)
≤ ϵ

∣∣∣r(t)∣∣∣
1
= ϵ.

Therefore, E[Xt+1 | Xt] ≤ ϵ + Xt. And so, E[Yt+1 | Yt] = E[Xt+1 | Yt] − ϵ(t + 1) ≤ E[Xt | Yt] + ϵt = Yt,
proving that the sequence of Yt form a super-martingale.

By Azuma’s inequality, this means that:

P
(
XT > ϵT +

√
T log(1/δ)

)
< δ.
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We have shown that with probability at least 1 − δ, the Multiplicative Follow the Lazy Leader algorithm
must change at most √

TM(1 + log(N))

times.
To be able to scale by α, we can use the same mini-batching argument as in Corollary B.2. This results in

regret:

4α2
√
(T/α2)M(1 + log(N)) + 4M(1 + log(N)) = 4α

√
TM(1 + log(N)) + 4M(1 + log(N)).

But now with a factor of α less switches:√
(T/α2)M(1 + log(N)) log(1/δ) =

1

α

√
TM(1 + log(N)) log(1/δ).

Theorem 5.2. Suppose the sender and receiver follow the stable sender, adaptive receiver protocol (Defini-
tion 5.1) with the algorithms Astable,Aadaptive, then the communication regret is at most

RT ≤ Rext
T (Astable) +Rtrack

T (Aadaptive;ST (Astable)),

where ST (Astable) is the number of switches made by Astable and Rext
T and Rtrack

T denote external and tracking
regrets.

There exist efficient algorithms Astable,Aadaptive that result in expected communication regret

E[RT ] ∈ O
(
MT 2/3(N logN)1/3(log T )1/6 +M log(N)

)
.

Proof. Let (σt, ρt) be the sequence output by algorithm Astable and let ρt be the sequence output by Aadaptive.
The sequence of strategies the sender and receiver employ according to the communication protocol is (σt, ρt).

We can decompose the communication regret of (σt, ρt) into two parts: 1) the sub-optimality of (σt, ρt)
and 2) the difference between (ρt) and (ρt). The parts correspond to the sub-optimality in the compression
problem and lack of synchronization between the sender and the receiver respectively.

RT

(
(σt, ρt)

T
t=1

)
= max

σ,ρ

T∑
t=1

rt((σ, ρ))−
T∑

t=1

rt((σt, ρt))

= Rcomp +Rsync, where,

Rcomp = max
σ,ρ

T∑
t=1

rt((σ, ρ))−
T∑

t=1

rt((σt, ρt))

Rsync =

T∑
t=1

rt((σt, ρt))−
T∑

t=1

rt((σt, ρt))

Observe that Rcomp measures the external regret of the output of Astable which is at most the switching
regret. Hence Rcomp ≤ Rswitch

T (Astable).
Let p be the number of times the sequence (σt, ρt)

T
t=1 switches. We know p ≤ Rswitch

T (Astable) Let
s1, . . . , sp be the time indices of the switches. Then,

Rsync =

T∑
t=1

rt((σt, ρt))−
T∑

t=1

rt((σt, ρt))

=

p∑
i=1

si+1∑
t=si

rt(σsi , ρsi)−
T∑

t=1

rt((σt, ρt))

≤ max
s1,...,sp
σ1,...,σp
ρ1,...,ρp

p∑
i=1

si+1∑
t=si

rt(σi, ρi)−
T∑

t=1

rt((σt, ρt))

≤ Rtrack
T (p) ≤ Rtrack

T (Aadaptive;R
switch
T (Astable)).
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Now we move to the second part of the proof which is to show the existence of Astable,Aadaptive that result
in the communication regret bound of the theorem statement. We mainly draw on results from previous work
in the switching regret and tracking regret frameworks to do this.

Here, we describe Astable,Aadaptive, state their switching regret and tracking regret guarantees, and show
how this results in the communication regret bound in the theorem.

The algorithm Astable needs to minimize switching regret over the space of all encoder-decoder pairs. Recall
that in our warmup study of the centralized communication setting, we already have an algorithm A that
minimizes the external regret over this space. In Lemma B.3), we showed that the Multiplicative Follow the
Lazy Leader algorithm has a small number of switches with high probability. Setting the mini-batching into α =
T 1/6M1/2N1/3(log T )1/6

(logN)1/6
batches, we get an expected regret of O

(
MT 2/3(N logN)1/3(log T )1/6 +M log(N)

)
using with probability at least 1− 1/T at most O

(
T 2/3(logN)2/3(N log T )1/6

)
switches.

Next, to construct Aadaptive that minimizes tracking regret with O
(
T 2/3(logN)2/3(N log T )1/6

)
segments

over the space of decoders, we use a standard tracking regret minimizing algorithm Aadaptive such as
AdaNormalHedge Luo and Schapire [2015] or the Fixed share algorithm Herbster and Warmuth [1998],
Cesa-Bianchi et al. [2012] as a base. We create M copies of this algorithm (A(m)

adaptive) associated with every
message in M.

When Aadaptive sees a message m, it outputs the state output by the associated algorithm A(m)

adaptive and
updates this copy leaving all other copies unchanged.

Each copy A(m)

adaptive achieves expected ST = O
(
T 2/3(logN)2/3(N log T )1/6

)
segments tracking regret at

most O
(√

TN · ST

)
∈ O

(
T 2/3(N logN)1/3(log T )1/6

)
. The tracking regret of Aadaptive is at most the sum of

tracking regrets of the copies and hence can be bounded byO
(
MT 2/3(N logN)1/3(log T )1/6 +M log(N)

)
.

B.4 Proof of Proposition 5.4
Proposition 5.4. (Synchronization in plain mode) Given any online algorithm A for the centralized
communication game, there are sender and receiver algorithms that don’t rely on initial shared meaning of
messages that achieve communication regret at most

RT ≤ Rext
T (A) +O

(
MN3 log(1/δ)

)
· ST (A),

with probability at least 1− δ for δ > 0, where ST (A) is the number of switches made by A.
There are efficient sender and receiver algorithms that don’t rely on initial shared meanings of messages

that result in expected communication regret

E[RT ] ∈ O
(
T 1/2MN3/2(logN)1/2

)
.

Proof. Receiver’s protocol. The receiver’s protocol consists of three components: 1) an exploration phase, 2)
an exploitation phase, and 3) detection of change. The receiver starts off in the exploration phase and then
performs exploitation until a shift is detected at which point the receiver changes back to exploration.

Receiver’s exploration. At the start of exploration, the receiver maps all messages to ⊥. For each message,
until the mapping remains ⊥, the receiver iterates through all possible states in a random ordering until
decoding to a state results in a reward. At this point, the receiver changes the mapping of the message to the
state that yielded the reward.

When the receiver has all messages mapped to a state instead of ⊥, the receiver continues to use this
decoder until a shift is detected. A shift is detected in the following way.

Shift detection. The receiver’s shift detection is designed accounting for the following property of the
sender’s protocol (we will describe the full protocol later). The sender always employs an encoder such that
the pre-image set of M − 1 messages has size 1 and only one message has a pre-image containing multiple
states.

This means that the synchronized decoder will only ever make mistakes when decoding one message.
If the decoder makes makes mistakes on two different messages, this means that the decoder is no longer
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synchronized with the sender’s encoder and a shift in the sender’s encoder is detected moving the receiver
back into exploration.

Sender’s protocol. The sender’s algorithm minimizes switching regret over the space of encoder-decoder
pairs as in the protocol defined by Definition 5.1 to obtain a sequence of pairs (σt, ρt).

At round t, the sender plays the encoder BR(ρt) that is optimal to ρt and maps M − 1 states in Im(ρ) to
messages 1, . . . ,M − 1 and all other states to message M .

If in a round t with ω∗
t ̸∈ Im(ρt), the sender receives a reward, in the next two rounds with distinct

realized states in Im(ρt), the sender intentionally causes a mistake to reset the receiver.

Regret analysis. Suppose (σt, ρt) are the sequence of strategies output by the sender’s stable algorithm
with O(T 2/3) switches.

For each distinct encoder-pair (σ(i), ρ(i)), we will show that with high probability, within O(MN2)
mistakes, the receiver will start choosing the strategy.

For each of the messages m from m1 to mM−1, the receiver will find ρ(i)(m) after making at most N
mistakes.

The tricky part is analyzing how the receiver finds the mapping ρ(i)(mM ) when multiple states are mapped
to mM by σ(i).

In fact, the receiver might incorrectly form a mapping that differs from ρ(i)(mM ). However, the sender
will force a mistake by intentionally using a different encoding for a message in m1, . . . ,mM−1.

We will now bound the number of times the sender would cause this intentional mistake to reset the
receiver. A sufficient condition for the sender to stop resetting is that when the catch-all message is generated,
the intended state for this message is generated and the receiver guesses the intended state. The probability
of this is at least 1/N2. Therefore with probability at least 1− δ, the number of resets is O

(
N2 log(1/δ)

)
.

We saw that the number of mistakes at each reset is O (MN). The regret due to lack of synchronization
is at most O

(
MN3ST log T

)
, where ST is the number of switches of A. We know by Corollary B.2 that, for

any choice of α ≥ 1, there is a A with external regret 2α
√
TM logN and with expected regret 1/α

√
2MT

many switches. Set α =
√
MN3. Then, the regret of this procedure is O

(
T 1/2MN3/2(logN)1/2

)
.

B.5 Proof of Proposition 5.5
Proposition 5.5. There is an efficient algorithm that allows the sender and receiver to learn a language with
regret E[RT ] ∈ Õ

(
MT 1/2

)
in the centralized communication game that switches at most 1 + log log T times.

Proof. We present a method that achieves a regret of T 1/2 that only requires the sender to switch their
strategy O (log log T ) times. This is inspired by Cesa-Bianchi et al. [2013, 2014].

The key idea is to have a sequence of stages where stage s lasts for Ts steps, starting with s = 0:

1. Use the empirical estimate of the probability of each state so far to estimate the optimal communication
strategy.

2. Commit to this for Ts steps, all the while gathering more data on the number of times each state
appears.

3. After Ts steps have run, increment s and go back to step 1 if we haven’t run for at least T steps yet.

Set the length of each stage to be Ts = T 1−2−s

. We can show that this is run for at most 1 + log2 log2 T
stages. Indeed, the length of just the last two stages are:

T 1−2−(1+log2 log2 T )

+ T 1−2− log2 log2(T )

≥ 2T 1−2
− log2

(
log2(T )
log2(M)

)

= T · 2T− 1
log2(T )

= T · 2 · 2− log2 T · 1
log2(T )

≥ T · 2 · 1
2
= T.
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How good is our estimate at this stage? Lemma B.4 gives us an answer to this.

Lemma B.4. With access to α draws of the underlying distribution of the stochastic communication game,
the sender and receiver can coordinate on a policy in the centralized game that achieves regret

1√
2α
·
(
2 +M

√
log(N

√
α)

)
∈ Õ

(
M√
α

)
.

per step.

Proof. Let p(ω) be the probability that ω ∈ Ω is drawn from the distribution. If we have access to p̂(ω) such
that |p̂(ω)− p(ω)| < τ , the encoding scheme corresponding to Lemma B.1 achieves Mτ regret per iteration.
Indeed, let (σ∗, ρ∗) be the optimal deterministic encoder-decoder pair under the true distribution of states p.
For each state ω ∈ Ω, ρ∗(σ∗(ω)) is mapped to a deterministic state, and in particular, the agents only get
utility when ω = ρ∗(σ∗(ω)). Because ρ∗ only has M possible inputs, it can only have at most M possible
outputs, and so there can only be at most M states ωi1 , . . . , ωik such that ρ∗(σ∗(ωij )) = ωij . Therefore, the
utility this scheme gets is precisely

∑k
j=1 p(ωij ). When the underlying distribution is the approximate p̂,

since
∣∣p(ωij )− p̂(ωij )

∣∣ < τ , the utility cannot differ by more than
∣∣∣∑k

j=1 p(ωij )−
∑k

j=1 p̂(ωij )
∣∣∣ ≤ kτ ≤Mτ .

Therefore, the optimal encoder-decoder scheme under probabilities p̂ gets a utility at least Mτ close to the
true optimal utility.

Let St be the state drawn from the hidden distribution at time t, and let Xω,t be the random variable
that is 1 when St = ω. After receiving α samples of the distribution, for any state ω, the probability that the
empirical estimate of the state distributions is at least τ = 1√

2α

√
log(2N/δ) away from the true expectation

by Hoeffding’s inequality is:

P
(∣∣∣∣∑α

t=1 Xω,t

α
− pω

∣∣∣∣ > τ

)
≤ 2 exp

(
−2(ατ)2

α

)
=

δ

N
.

By the union bound, the probability that the estimates for all N states are within τ is then 1− δ. In this
case, as shown above, we achieve a regret of τ per step. Because the probability of failure is at most δ, in
expectation, regret per step is at most δ +Mτ . Setting δ = 2/

√
α, we get a regret of at most

2√
2α

+
M√
2α

√
log(N

√
α)

per time step.

By the time we have reached stage s, the receiver has available to them at least T 1−2−s+1

samples from
the previous stage. This stage is run for T 1−2−s

steps. By Lemma B.4, this step then receives a regret of at
most

T 1−2−s

√
2T 1−2−s+1

·

(
2 +M

√
log
(
N
√
T 1−2−s+1

))
≤ 1√

2
· T 1/2

(
2 +M

√
log(NT )

)
.

Summing over at most all 1 + log log T stages, we achieve the claimed regret of

1√
2
· T 1/2

(
2 +M

√
log(NT )

)
(1 + log log T ).

B.6 Proof of Theorem 6.3
Theorem 6.3. There is an efficient no-regret algorithm that can achieve a (1− 1/e)-approximation of optimal
communication for arbitrary utilities in stochastic environments with regret Õ

(
MT 1/2

)
.
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Proof. Simply run the algorithm presented in Proposition 5.5. Except, to find the messaging scheme
that maximizes expected utility computed using the current estimate of probabilities of each state p̂, by
Proposition 6.2, we must find the set of M actions that maximizes:

V ({a1, . . . , aM}) = E
ω∼p̂

[
max

i
r(ai, ω)

]
.

We can use the greedy algorithm in Proposition 6.2 to get a (1− 1/e)-approximation of optimal utility.
When our approximates are within τ of the true state distribution p, i.e. |pω − p̂ω| < τ , we can prove

that the solution we compute is never more than an additive Mτ away from a (1− 1/e) approximation of
optimal in expected reward. This robustness of the greedy algorithm to additive error has been noted before
by Streeter and Golovin [2008, Theorem 6]. Indeed, every step of the greedy algorithm is never off by more
than τ maxi r(ai, ω) ≤ τ , and the algorithm is performed for M steps.

Running the proof as in Proposition 5.5 from here, we get a regret of at most(√
2T 1/2

(
1 +M

√
log(NT )

)
+M logM (A)

)
· (1 + log log T ),

where we use logM (A) instead of logM (N) in the switching cost because a decoder that maps to actions
instead of states is easier to communicate.

B.7 Proof of Lemma 6.5
Lemma 6.5. Computing an α-approximation of the optimal strategy (not necessarily deterministic), where
α > 1− 1/e, in a communication game with utilities restricted to be 0 or 1 is NP-hard.

Proof. The problem of finding α approximations to the weighted maximum-M -coverage problem with
α > 1−1/e is NP-hard [Feige, 1998]. We will reduce this to finding α approximations of optimal communication
in a communication game with utilities restricted to be 0 or 1.

Given a value k and a collection of sets S = {S1, . . . , Sm} each with elements in a universe U , and a
function that assigns a weight w(e) to each element e ∈ U , find a collection of k sets such that the weight of
the covered elements is an α approximation of the optimum. Without the loss of generality, scale the weights
to sum to 1.

Create a communication game with M = k messages over the state space U . Then, make each Si an
action, and use the following reward function:

r(e, Si) =

{
1 if e ∈ Si,
0 otherwise.

Let the underlying distribution D assign a probability of w(e) to each state.
We will prove two useful facts about this game. First, every collection of sets Si1 , . . . , Sik , with union

S =
⋃k

j=1 Sij , induces an encoder-decoder pair σ, ρ that achieves utility that is at least the value of the sets
in the maximum-k-coverage problem:

∑
e∈S w(e). Indeed, let the sender sends message mj when observing a

state in Sij \
⋃j−1

ℓ=1 Siℓ . The receiver plays set Sij upon receiving message mj . Let S =
⋃k

j=1 Si. Whenever a
state in S appears, the agents get a reward of 1, and so the expected reward of this encoder-decoder pair is∑

e∈S w(e), precisely the value of the sets in the maximum-k-coverage problem.
Second, every encoder σ induces a collection of sets Si1 , . . . , Sik whose value in the maximum k coverage

problem is at least the utility σ achieves in the communication game. To see this, notice that there exists a
deterministic best response to ω. Indeed, the Decoder may simply play the action that maximizes utility
conditioned on the message received.

Let ρ be a deterministic best response. Each message that ρ sees is mapped to an action Si. There are k
possible messages, so simply take the k actions, Si1 , . . . , Sik , that the receiver chooses to play as your choice
of sets. Let S =

⋃k
j=1 Sij . The value the agents receive is at most the probability that elements in S appear:∑

e∈S w(e). Thus, the protocol above is optimal for both problems.
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These reductions back and forth imply that the optimal values of both problems are equal.
Using these two facts, we can reduce the problem of finding α approximations of the maximum k coverage

problem to finding α approximately optimal encoder-decoder pairs in the communication game. Suppose
(σ, ρ) are an encoder-decoder pair that achieve an α approximation of optimal play in this communication
game. Applying fact 1 on (σ, ρ), this means that we have found a collection of sets Si1 , . . . , Sik that achieve
at least α times the max reward of the communication game. Because the optimal reward in this game is
equal to the optimal reward in the maximum-k-coverage problem, we are done!

B.8 Proof of Theorem 6.6
Theorem 6.6. Suppose that a communication algorithm achieving an α > 1− 1/e approximation of optimal
play for arbitrary utilities satisfies RT ∈ poly(N,M), and each iteration requires poly(N,M) compute for the
sender and receiver. If P ̸= NP, it must be that RT ∈ ω(T 1−ϵ) for all ϵ > 0. This holds even when rewards
are restricted to be either 0 or 1.

Proof. Suppose for the sake of contradiction that RT ∈ O
(
T 1−ϵ

)
for some ϵ > 0.

We can write for some constants c1, c2, α, β ∈ R, that RT (N,M) ≤ c1N
αMβT 1−ϵ + c2. This means that

average regret per time step is:
c1N

αMβ

T ϵ
+

c2
T
.

Run this algorithm for T = 1 + max
(
c2, c1N

α/ϵMβ/ϵ
)
∈ poly(N,M) steps, and averaged regret per

iteration becomes less than 1. Since regret is always an integer, as utilities are either 0 or 1, this means that
on some iteration the learning algorithm must get 0 regret. That is, the optimal strategy is played.

However, it is NP-Complete to compute the optimal strategy by Lemma 6.5. Simulating the learning
protocol above must then solve the NP-Complete problem in polynomial time, impossible if P ̸= NP.

Note that while it severely restricts the efficiency of any learning algorithm for the general communication
problem, Theorem 6.6 doesn’t imply that there doesn’t exist a no-regret algorithm. Indeed, there could still
exist an efficient algorithm where RT ∈ O (T/log T).

C Minimizing the Number of Switches
All else being equal, stable algorithms will outperform unstable algorithms. The natural follow up question is:
what are the most stable learning algorithms? The goal of this section is to introduce an analogue of the
Explore-then-Commit algorithm and prove guarantees on its performance.

C.1 A Fine-Grained Analysis of Switching Cost
The sender and receiver can coordinate well not only when switches are infrequent, but also when changes are
local. Let Ham(δ, δ′) =

∑
m∈M 1(δ(m) = δ′(m)) be the Hamming distance of two decoding schemes. We can

give better bounds on switching cost in terms of the Hamming distance of the best responses of the sender’s
strategy Ham(BR(σt),BR(σt+1)).

Proposition C.1. The cost of switching from encoding scheme σ to encoding scheme σ′ is at most 1 +
Ham(BR(σ),BR(σ′))(1 + logM (N)).

Proof. When switches are small, the sender and receiver may coordinate via a more intricate messaging
scheme. When it is time for a predetermined switch, the sender sends a message detailing how many of the
at most M outputs of the best response has changed in logM (M) = 1 message. For each message changed,
the sender starts off by sending that message, then sending the optimal state to respond with in logM (N)
messages. This all in all incurs a switching cost of 1 + Ham(BR(σt),BR(σt+1))(1 + logM (N)).
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C.2 Capture then Commit
We can define the Capture-then-commit policy as follows:

1. For the first T ′ steps, maintain a counter for the number of times each state is received. During this
phase, send the receiver arbitrary messages.

2. For the remaining T − T ′ steps, play the current estimate of the optimal strategy. The counters for the
number of times each state is observed are not updated anymore.

Using this we can get what seems to be optimal regret.

Proposition C.2. Capture then Commit achieves a regret of Õ
(
MT 2/3

)
in the centralized communication

game

Proof. This is an application of Lemma B.4. Aggregating the frequency of the first T 2/3 iterations gives us
an encoder-decoder scheme in the centralized game with regret at most

√
2
(
1 +M

√
log(NT 1/3)

)
T 1/3

per step.
During the capture phase, we accumulate a regret of at most T 2/3. During the rest, we accumulate a

regret of at most
√
2T 2/3 ·

(
1 +M

√
log(NT 2/3)

)
, meaning in total Õ

(
T 2/3M

)
.

We can use the same techniques as before to generalize this to the decentralized communication game.

Theorem C.3. The sender and receiver can play a joint policy that achieves a regret of O
(
T 2/3M

√
log(NT ) +M log(N)

)
.

Proof. The capture then commit protocol only switches once, so the cost of switching is constant in T . Using
the regret bound in the centralized game derived in Proposition C.2, and the switching cost derived in
Theorem 5.3, we get a regret of O

(
T 2/3M

√
log(NT ) +M log(N)

)
.

D Useful results and algorithms from previous online learning frame-
works

D.1 Combinatorial bandits
The general set up for combinatorial bandits is when the action space C is {0, 1}d. At round t, a reward
vector rt ∈ [0, 1]d defines the reward of action ct ∈ C as ⟨ct, rt⟩.

Here we describe the algorithm Component Hedge (CH) provided by Koolen et al. [2010] in the full-feedback
setting. Before describing the theorem, here is it’s regret bound:

Theorem D.1 (Component Hedge regret restated from Koolen et al. [2010]). Let U be the maximum number
of non-zero entries in any c ∈ C i.e., U = maxc∈C⟨1, c⟩, where 1 is the all-ones vector.

Component Hedge achieves an expected external regret of E[Rext] ≤
√
2TU log(d/U) + U log(d/U).

Component Hedge Algorithm The algorithm maintains a vector wt ∈ conv(C) in the convex hull of C
to guide the selection of actions with the initial weight w0 being the uniform distribution being d/U (where
U is the maximum number of non-zero entries in any c ∈ C).

At round t, CH decomposes wt−1 into a convex combination over c ∈ C and samples a c ∈ C according to
the weights of this convex decomposition. The expected reward of CH is therefore ⟨wt−1, rt⟩.

Based on the reward vector rt, wt−1 is updated to wt as follows. First it is updated to an intermediate ŵt

with ŵti = wt−1,i exp(−η(1− rt,i)). Then ŵt is projected back to conv(C) by the relative entropy projection
to get wt+1. That is, wt = argminw∈conv(C) ∆(w||ŵt).
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Efficient implementation of CH for k-element subsets. When the concept class C is all vectors in
{0, 1}d with k ones, here we describe the argument from Koolen et al. [2010] on how CH can be implemented
efficiently.

There are two steps we need to argue efficiency for. The first is decomposing w ∈ conv(C) into a convex
combination of elements in C. And the second is projecting a vector into conv(C).

When C is all k-element subsets of d, the convex hull is the set of all w ∈ [0, 1]d with
∑

i∈[d] wi = k.
The convex decomposition over d elements of C is done by a greedy decomposition, including each possible

new c ∈ C with the highest possible coefficient and iteratively removing sets in the convex combination.
Relative entropy projection into conv(C) is done by re-scaling the components so that they lie in [0, 1]

and sum up to k.
Both the decomposition and projection steps can be done in O

(
d2
)

time.

D.2 Bandits with switching cost
In the bandits with switching costs problem, in addition to the reward achieved from the action selected,
there is a constant cost λ incurred every time the action selected in a round differs from the action selected
in the previous round.

Any algorithm that minimizes external regret can be transformed to minimize switching regret which is
external regret plus λ times the number of switches.

The transformation divides T rounds into batches each of length τ and queries the external regret
minimizing at the start of the batch and selects the output as the action throughout the batch. At the end of
the batch, the external regret minimizing algorithm is updated with the average reward obtained during the
batch.

Theorem D.2 (Restatement of theorem from Cesa-Bianchi et al. [2013]). Given an algorithm that achieves
a regret of at most R(T, k) dependence on the number of rounds T and number of actions k, we can construct
an algorithm via batching with batch length τ to get an algorithm with switching regret

Rswitch,λ ≤ τR

(
T

τ
, k

)
+ λ

T

τ
.

Corollary D.3. An algorithm with external regret O
(√

T log k
)

can be transformed to have switching regret
O
(
T 2/3
√
log k

)
by choosing τ = T 1/3.

D.3 Tracking regret
The tracking regret framework has been studied to achieve good rewards relative to the baseline action
changing p times during the T rounds and is related to adaptive regret.

Herbster and Warmuth [1998] provide an algorithm Fixed-Share that achieves m-segment tracking regret
O
(√

Tm(logN + log T )N
)

in the full information setting. Cesa-Bianchi et al. [2012] show that the fixed
share algorithm is equivalent to online mirror descent with a particular projection. Theorem 4.1 of Shalev-
Shwartz et al. [2012] shows how online mirror descent with bandit information can be implemented without
degradation of regret.

This argument is stated in the following Theorem by Daniely et al. [2015].

Theorem D.4 (Restatement of theorem by Daniely et al. [2015]). Fixed-Share algorithm in the bandit
feedback setting achieves expected k-segment tracking regret at most O

(√
Tm(logN + log T )N

)
.
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